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This review provides an introduction to identification and 
estimation methods for fixed-effects models with heterogeneous 
coefficients, which require identification strategies that are notably 
different from those for standard fixed-effects models. The strategies 
imply consistent estimation methods for the parameters of interest, 
which  are also different from those used in standard fixed-effects 
models. As an introductory review, this work defers detailed 
implementation procedures for the estimation methods to future 
studies.

Keywords: ‌�Fixed effects, Difference-in-differences models, Panel 
data models, Unobserved heterogeneity

JEL Classification: C23

I. Introduction

Fixed-effects models are widely used in many empirical applications 
involving panel data. Such models are useful, because  they allow 
researchers to account for unobserved heterogeneity across units 
or time periods. Fixed-effects models are typically implemented 
with homogeneous coefficients, which implies that the effects of the 
regressors on the outcome variable are the same across all the units. 
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This implication is in contrast to the fact that the fixed effects in such 
models allow for unit-specific intercepts.

Recently, the literature on fixed-effects models that allow for not 
only heterogeneous intercepts but also heterogeneous coefficients in 
the context of o ne-way and two-way fixed-effects (TWFE ) models has 
grown. This research includes studies on random coefficient models and 
difference-in-differences (DID) models that can account for treatment 
effect heterogeneity.

In this review, I provide a concise introduction to the methods. Given 
that the identification and estimation techniques for the models differ 
significantly from those used in standard fixed-effects models, I focus 
on the key ideas for identifying and estimating the parameters of 
interest. I defer the discussion of detailed implementation procedures 
for the estimation of the parameters to future research.

I begin by discussing the identification of one-way fixed-effects 
models with heterogeneous coefficients, which  are commonly referred 
to as random coefficient models. The identification strategy for such 
models varies depending on whether the regressor is strictly exogenous 
or sequentially exogenous, in which dynamic regressors, such as 
lagged outcome variables, are permitted in the latter case. For the 
strictly exogenous case, I review the identification methods proposed by 
Chamberlain (1992) and Arellano and Bonhomme (2012), which involve 
time-series ordinary least squares (OLS) estimation. For the sequentially 
exogenous case, I discuss the partial identification method proposed by 
Lee (2022).

Then, I turn to TWFE models with heterogeneous coefficients, which 
have been extensively examined in the context of DID models with 
treatment effect heterogeneity. From the substantial body of literature, 
I focus on the methods proposed by Wooldridge (2021) and Borusyak, 
Jaravel, and Spiess (2024). The former used TWFE regression with 
interacted regressors, whereas the latter conducted imputation of the 
baseline values.

The remainder of this paper is organized as follows: Section II  
discusses one-way fixed-effects models, Section III expounds on TWFE 
models and emphasizes their application in DID contexts, and Section 
IV concludes the review. 
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II. Fixed-effects models with heterogeneous coefficients

In this section, I review one-way fixed-effects models with 
heterogeneous coefficients. For comparison, a standard one-way fixed-
effects model is written as

	 i t i i t i tY X i N t Tα β ε′= + + = … = …, 1, , , 1, , ,    �   (1)

where Yit is the outcome variable, Xit is the vector of the regressors, 
αi is the fixed effects, β is the vector of the coefficients, and εit is the 
idiosyncratic error term. I discuss this model in the context of short 
panel data, which corresponds to the asymptotics, where N tends to 
infinity, but T is fixed.
Depending on the context of the empirical application, I assume that Xit 
is strictly exogenous, sequentially exogenous, or a combination of both. 
Xit is said to be strictly exogenous if

i t i i TX Xε … = 1( | , , ) 0 .

Under this assumption, β can be estimated consistently by using the 
well-known within transformation estimator. Strict exogeneity implies 
that the error term εit is uncorrelated with the entire history of Xit. 
Consequently, the current error term εit is not allowed to be correlated 
with future values of Xit, which can effectively rule out the feedback 
effects of current outcome Yit on future values of Xit. For example, strict 
exogeneity will be violated when Xit includes the lagged outcome Yit−1.

In contexts where strict exogeneity is not plausible, such as when 
Xit includes a lagged outcome variable, sequential exogeneity can be 
considered. Xit is said to be sequentially exogenous if

i t i i tX Xε … = 1( | , , ) 0 .

The assumption implies that εit is uncorrelated only with the current 
history of Xit, which allows the current error term εit to be correlated 
with future values of Xit. Under sequential exogeneity, the within 
transformation estimator is no longer consistent for β. Instead, β can 
be estimated consistently by using instrumental variable regression 
techniques, as pointed out by Anderson and Hsiao (1982), Arellano and 
Bond (1991),  and Blundell and Bond (1998).
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Next, I introduce a one-way fixed-effects model with heterogeneous 
coefficients, in which I replace β in (1) with βi, as follows:

ii t i i t i tY Xα β ε′= + + .

This model is commonly referred to as a random coefficient model in 
the literature. The specification allows intercept αi and coefficient vector 
βi to be unit specific. For notational simplicity, I define 

i i iγ α β ′≡ ( , )  and 

i t i tW X ′ ′≡ 1( , )  and rewrite the above model as

	 ii t i t i tY W γ ε′= + .     �  (2)

The analysis of random coefficient models requires modifications to the 
setup of standard fixed-effects models. First, because γi is unit specific, 
a parameter of interest that appropriately summarizes the different 
values of γi across the units must be defined. In this review, I focus on 
the average value of γi and define the parameter of interest as

iθ γ=  ( ) .

Following the random coefficient model framework, I consider γi as a 
random variable and do not make any assumptions on its distribution. 
Then, I interpret the fixed effects, that is, the individual values of γi 
for each i, as random draws from the nonparametric distribution of γi. 
Similar to standard fixed-effects models, the random variable γi can be 
freely correlated with Wit. Then, I consider the expectation of γi as the 
parameter of interest.

Second, the identification of random coefficient models requires 
strong conditions for the strict and sequential exogeneity of Xit. In 
random coefficient models, Xit is said to be strictly exogenous if

	 ii t i i TW Wε γ … = 1( | , , , ) 0 . �    (3)

Similarly, Xit is said to be sequentially exogenous if

	 ii t i i tW Wε γ … = 1( | , , , ) 0 .   �  (4)

In other words, strict and sequential exogeneity in random coefficient 
models will require the error term εit to also be uncorrelated with γi. This 
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additional conditioning is necessary, because γi is a random variable in 
the models.

Subsequently, I discuss the identification and estimation of iγ ( )  in 
the random coefficient models. I begin with a case where Xit is strictly 
exogenous, that is, when (3) holds. The model has been analyzed by 
Chamberlain (1992) and Arellano and Bonhomme (2012). For each i, I 
consider model (2) across its time series, as follows:

i i t i i

i i t i i

i T i t i i T

Y W
Y W

Y W

γ ε
γ ε

γ ε

′= +
′= +

′= +


1 1

2 2

,
,

.

The key observation of Chamberlain (1992) and Arellano and 
Bonhomme (2012) is that, because γi is a fixed coefficient within the 
time series of unit i, OLS can be used to estimate γi by using the time 
series data. First, I stack the time series equations in vector form, as 
follows:

ii i iY W γ ε= + ,

where i i i TY Y Y ′≡ …1( , , ) , i i i TW W W ′≡ …1( , , ) , and ε i  = (ε i1,...,εiT). 
Assume that i iW W′  is full rank, which holds if and only if the columns 
of Wi are linearly independent. The OLS estimator of γi from unit i’s time 
series is given by

OLS
i i i i iW W W Yγ −′ ′= 1ˆ ( ) .

If i iW W′  is full rank with probability 1, then

OLS
i i i i i i i i i i iW W W Y W W Wγ γ ε γ− −′ ′ ′ ′= = + =   1 1ˆ( ) ( ( ) ) ( ( ) ) ( ) ,

where i i i iW W W ε−′ ′ = 1( ( ) ) 0  by (3). The result implies that iγ ( )  can 
be estimated by using the following procedure:

• For each i, run the OLS on their time series to obtain OLS
iγ̂ .
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• Estimate iγ ( )  by averaging the OLS estimators, as follows:


OLS
i i i i i

N N

i
i i

W W W Y
N N

γγ −

= =
′ ′≡ =∑ ∑ 1

1 1
ˆ ( )1 1( ) .

To express it precisely, iθ γ=  ( )  satisfies the following moment 
condition:

i ii i i Y WW W W θ− −′ ′ = 1 ( )( ( ) ) 0 .

Second, I use the generalized method of moments to estimate θ and 
obtain the standard error of the estimator. Refer to Arellano and Bond 
(1991) for details on efficient moment conditions that involve generalized 
least squares, instead of OLS.

A key assumption in this approach is that i iW W′  is full rank 
for every i. The requirement corresponds to the condition in the 
standard fixed-effects models in (1), that is, for the within estimator 
to be consistent, within variation in Wi must exist, on average, that 
is, i iW W′ )(  must be full rank. However, the requirement is strong 
in random coefficient models, because γi is unit specific, and its 
distribution is unrestricted; thus, the identification of iγ ( )  will require 
information on every γi, which can be obtained only when the individual 
Wi has within variation for each unit. By  contrast, in standard fixed-
effects models, within variation is adequate, on average, because β is 
a fixed parameter, and information across the units can be pooled to 
estimate the single β.

A key intuition behind the result of OLS
i iγ γ= ˆ( ) ( )  is that the OLS 

estimator OLS
iγ̂  is unbiased when Wi is strictly exogenous.

OLS
i i i i i i i i i i i iW W W W W Wγ γ γ ε γ γ−′ ′= + =  1ˆ( | , ) ( ( ) ( ) | , ) .

Given that T is fixed and possibly small, there is no guarantee that OLS
iγ̂ , that 

is, the OLS estimator of γi based on T observations, is a precise estimate 
of γi. Nevertheless, OLS

iγ̂  is an unbiased estimate of γi. Hence, when 
OLS
iγ̂

 is averaged across i, the unbiased error terms will average to 0, thereby 
making the average of OLSˆ  a precise estimate of iγ ( ). Specifically, OLS

iγ̂  is 
a consistent estimator of iγ ( )  as N tends to infinity, despite each OLS

iγ̂  
not being consistent for its corresponding γi.

Next, I discuss the identification of iγ ( )  when Wit is sequentially 
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exogenous, as defined in (4). The model was analyzed by Chamberlain 
(1993), and the work was later published by Chamberlain (2022) and 
Lee (2022). Unfortunately, the studies showed that the consistent 
estimation of iγ ( )  is not possible under the assumption. The key 
intuition behind the result is that OLS

iγ̂  will no longer be unbiased when 
Wit is sequentially exogenous.

To illustrate the concept, consider a case where i ti t YW − ′= , 1(1, ) , 
i ii α βγ ′ ′= ( , ) , and T = 2.

i i i i i

i i i i i

Y Y
Y Y

α β ε
α β ε

= + +

= + +
1 0 1

2 1 2

,
,

where 
i i i iYε α β = 1 0( | , , ) 0 , and 

i i i i iY Yε α β = 2 0 1( | , , , ) 0 . The 
OLS estimator of βi from the two-period time series is given by the ratio 
of the differences in Yit.

i iOLS
i

i i

Y Y
Y Y

β
−

=
−

2 1

1 0

ˆ .

The above equation is not an unbiased estimator of βi, because 

i
i iOLS

i
i iY Y
ε ε

β β
−

= +
−

2 1

1 0

ˆ ,

where the second term has a nonzero expectation, because εi1 and 
Yi1 are correlated. Thus, the average of OLS

iβ̂  may not be a consistent 
estimator of iγ ( ) , because the biased error term will not necessarily 
average to 0.

Lee (2022) showed that no unbiased estimator of βi exists in this 
case, and 

iβ ( )  can be identified if and only if an unbiased estimator 
of βi from the time series exists. The results imply that iβ ( )  is not 
identified, meaning that a consistent estimation for 

iβ ( )  is not 
possible. This finding complements and strengthens the work of 
Chamberlain (1993, 2022), who showed that iβ ( )  will not be identified 
when Yit is discrete.

Lee (2022) showed that, for the general random coefficient model 
(2) under sequential exogeneity (4), the consistent estimation of the 
lower and upper bounds of iγ ( )  would be possible, which shows that 
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iγ ( )  is partially identified. Subsequently, I discuss the derivation of 
the bounds that can be estimated  consistently. Consider the following 
moment conditions implied by (4):

	
i i t i t i t i

i t i t i t i

W Y W
W Y W
γ γ

γ
′ ′− =

′− =




( ( ) ) 0,
( ( ) ) 0,   �        (5)

I consider the identification of an entry in the γi vector. Let e be a vector 
that will select an entry for γi. For example, e = (1, 0,...,0) will select the 
first entry, and e = (0, 0,...,1) will select the last entry. Then, I focus on 
the identification of e ieθ γ′≡  ( ) .

For the fixed constants λ and μ, I consider the following function:

T T

i i i i i i t i t i t i i t i t i t i
t t

W Y e W Y W W Y Wλ µ γ γ λ γ γ µ γ
= =

′ ′ ′ ′ ′= + − + −∑ ∑
1 1

( , , , , ) ( ) ( ).

Function   can be interpreted as the “Lagrange function,” because it is 
the sum of the objective term ie γ′  and the moment functions in (5), 
with Lagrange multipliers λ and μ.

The Lagrange function has two key properties. First, its expectation 
equals the parameter of interest ie γ′ ( ) , as follows:

( )

( )

i i t i t i t i

i t i t i t i

i

i

T

t
T

t

W Y W

W Y W

e

e

γ γ

γ

γ λ

µ γ

=

=

′ ′−

′− =

′= + +

′ ′

∑

∑

  

 


1

1

) ( )

( ) ),

( ) (

(

where the last equality follows (5). Second, for each fixed (λ, μ, Wi, Yi),   
is a quadratic polynomial in γi.

i i i

i

i i t i t i t i t

i t i t i t i t

T T

t t
T T

t t

e W Y W W

W Y W W

γ γ γγ λ λ

µ µ γ

= =

= =

 
′ ′ −  

 

−

′ ′= + + +

′ ′ ′

∑ ∑

∑ ∑


1 1

1 1
,

with the leading coefficient matrix T
i t i t i it W W W Wλ λ=− = −′ ′∑ 1 .  

Suppose that i iW W′  is full rank for every i, as required for the 
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identification of iγ ( )  when Wit is strictly exogenous. Then, for λ < 0, 
the leading coefficient matrix i iW Wλ− ′  is positive definite, in which 
case,   has a finite minimum with respect to γi. Then, it follows that

( )
i

i i i i i i ie W Y W Y
γ

γ λ µ γ λ µ γ′ = ≥   ( ) ( ( , , , , )) min ( , , , , ) ,

where 
i

i i iW Y
γ

λ µ γmin ( , , , , )  is finite for every i and therefore well 
defined. This calculation shows that ( )

iγ
 min  is a lower bound of 

ie γ′ ( ). Furthermore, because ( )
iγ

 min  is a lower bound of all λ < 0 
and μ, it follows that

i
ie

λ µ γ
γ

<

 
 
 

′ ≥  
0,

.( ) max min

Subsequently, I derive the expression of the lower bound. For brevity of 
notation, let T

i i t i tt
W W

=
′= ∑

1
 and 

i i t i t
T
t W Y== ∑ 1 . Then,  can be 

written as

i i i i i i i i ie γ λ γ γ λ γ µ µ γ′ ′ ′ ′ ′= + + − + −    ( ) .

I attain the minimum of   with respect to γi as the solution to the first-
order condition.

i i i i
i

e λ λ γ µ
γ

∂ ′= + − − =
∂
   2 0 ,

which yields

ii i ieγ λ µ
λ

− ′= + −  1* 1 ( ).
2

The substitution of the equation into   yields

i
i i i i i ie e

γ
λ µ λ µ µ

λ
−′ ′ ′ ′= + − + − +      11min ( ) ( ) .

4

Then, to compute the lower bound
 

iλ µ γ<

 
 
 

 
0,

max min , I maximize the 
expectation of the above expression with respect to λ < 0 and μ. After 
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calculating the first-order conditions and substituting them back into 
the expression, I obtain the expression of the lower bound as 

( )

OLS
i

i i i i i i i i

e

e e e e Y Y Y Y

γ

− − − −

′ + −

′ ′ ′ ′ ′− −



        1 1 1 1

1 1ˆ( )
2 2

( ( ) ( ) ) ( ) ( ) ( ) ( ) ,

where

γ 0ˆOLS
i i i i iγ − −= =     1 1ˆ , ( ) ( ).

By applying the same approach to λ > 0, I obtain the upper bound of 

ie γ′ ( )  as

( )

OLS
i

i i i i i i i i

e

e e e e Y Y Y Y

γ

− − − −

′ + +

′ ′ ′ ′ ′+ −



        1 1 1 1 .

1 1ˆ( )
2 2

( ( ) ( ) ) ( ) ( ) ( ) ( )

Then, I can compute the confidence interval of the bounds based on the 
result. Refer to Lee (2022) for details on the calculation of the confidence 
interval.

Lee (2022) showed that the lower and upper bounds are the sharp (i.e., 
largest) bounds of ie γ′ ( )  under the following moment conditions:

( )

( )

i i t i t i t i

i t i t i t i

T

t
T

t

Y

Z Y

γ γ

γ

=

=

′ ′− =

′− =

∑

∑





 



1

1

( ) 0,

( ) 0,

which implies that the bounds are outer bounds under (4).

III. DID models

In this section, I discuss the identification and estimation of 
TWFE models with heterogeneous coefficients. Traditionally, TWFE 
models have provided the motivation for DID analyses. However, 
recent advancements in the DID literature (e.g., Chaisemartin and 

γ 0ˆ

γ 0ˆ
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D’Haultfoeuille, 2020; Callaway, Goodman-Bacon, and Sant’Anna, 2024) 
emphasize that standard TWFE regressions are not consistent when the 
treatment effects are heterogeneous.

A standard TWFE regression specification for analyzing the treatment 
effect is written as

i t i t i t i tY D i N t Tα δ β ε= + + + = … = …, 1, , , 1, , ,   (6)

where Yit is the outcome variable, Dit is the binary treatment variable, αi 
and δt are the unit and time fixed effects, and εit is an idiosyncratic error 
term. In DID models, Dit is typically assumed to be strictly exogenous, 
as follows:

i t i i TD Dε … = 1( | , , ) 0.

Similar to the one-way fixed-effects models, I consider a case of short 
panels, where N tends to infinity, but T is fixed in the asymptotics.

Recent advancements in the DID literature emphasize that, when the 
treatment effect is heterogeneous across the units and time periods, 
that is,

	 i t i t i t i t i tY Dα δ β ε= + + + ,   � (7)

coefficient β in (6) will not necessarily be equal to the expectation of βit 
in (7), except in the canonical two-period DID model. Specifically, in the 
canonical model, where T = 2, Di1 = 0, and 

iD ∈2 {0, 1} , coefficient β in 
(6) and βit in (7) satisfy

i t iDβ β= = 2( | 1),

where the right-hand side is referred to as the average treatment effect 
on the treated (ATT). However, when T > 2, β will not necessarily be 
equal to the ATT.

The literature proposed various procedures for the consistent 
estimation of the ATT. Next, I discuss the proposed solutions for DID 
models with binary treatment ( i tD ∈ {0, 1} ) and irreversible treatment 
(Dis = 1 implies Dit = 1 for t > s). I define
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i i tG t D≡ =min { | 1}

as the first period, when unit i enters the treatment, which is commonly 
referred to as “groups” in the literature. If Dit = 0  for all t, then Gi is set 
to ∞. It is typically assumed that Di1 = 0, which means that all the units 
are untreated at t = 1; thus, Gi  ≥ 2 for all i. Let q ≡ min Gi be the first 
period, when any of the units can enter the treatment, which is referred 
to as the first posttr eatment period in the literature.

The literature defined the parameter of interest as

i t iATT g t G gβ= =( , ) ( | ).

The equation represents the average treatment effect at time t for the 
units that entered the treatment at time g. Then, I define the aggregate 
ATT by averaging ATT (g, t) across the different (g, t). For example, the 
ATT across all the groups and periods is defined by

T

g t

T

g q t g
w ATT g t

= =
∑ ∑ ,( , )

where wgt ≥  0 represents the weight on ATT (g,t ) such that 
T T

g tg q t g
w

= =
=∑ ∑ 1.

The literature proposed various procedures for estimating ATT (g, 
t). I describe the key idea in this paragraph. Suppose that we are 
interested in estimating ATT (3, 5), which is the ATT of group 3 at time 
5. If we restrict the analysis to the data subset in which iG ∈ ∞{3, } , 
and t ∈ {1, 5} , the subset will become the canonical DID model. Then, 
as discussed previously, the TWFE regression model applied to this 
canonical DID setup will consistently estimate the parameter of interest.

ti t i i t i t iY D i G tα δ β ε= + + + ∈ ∞ ∈, : {3, }, {1, 5},

where β = ATT (3, 5).
By generalizing the idea, Wooldridge (2021, 2023) proposed the 

following generalized TWFE regression model, which is consistent with 
a general DID setup:

T T

i t i t g s i i t i t
g q s g

Y G g t s Dα δ β ε
= =

= + + = = +∑ ∑ 1( , ) ,
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where βgs = ATT (g, s). The regression can be implemented conveniently 
by using a standard statistical software and regressing Y it on the 
unit and time fixed effects (i.e., unit and time indicators) and a triple 
interaction term of the group indicator, time indicator, and Dit. The 
standard errors of βgs can also be calculated conveniently by using a 
standard statistical software.

Borusyak, Jaravel, and Spiess (2024) proposed an imputation-
based estimator for ATT (g, t) as an alternative. The estimator can be 
implemented through the following steps:

• Run a regression of Yit on the unit and time fixed effects by using 
the data subset in which Dit = 0, as follows:

Yit = αi + δt + εit,       (i, t) : Dit = 0.

Let iα̂  and 
tδ̂  be the estimates from the regression.

• For each (i,t), where Dit = 1, calculate the imputed baseline outcome 
as

ti t iY � �� � .ˆ ˆˆ

• Estimate ATT (g, t) by using



i

i t i t
i G gg

ATT g t Y Y
N =

= −∑
:

1 ˆ( , ) ,

where Ng = #{i:Gi = g} is the number of observations such that Gi = g.
The calculation of the standard error of ATT g t( , )  is less straightforward 
than the TWFE regression method proposed by Wooldridge (2021, 2023). 
However, an imputation-based estimator can handle unbalanced panel 
data, whereas the TWFE regression method is valid only for balanced 
panel data. In addition, Borusyak, Jaravel, and Spiess (2024) provided a 
statistical package to facilitate the implementation of their approach.

The procedure proposed by Callaway and Sant’Anna (2021), which 
I do not discuss in detail, builds on the same idea that the TWFE re-
gression estimate is consistent when restricted to two-period data. The 
approach is useful when researchers wish to incorporate additional 
covariates into the DID models. The addition of covariates as additive 
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terms in the TWFE regression method will be valid only if the additive 
specification is true. Callaway and Sant’Anna (2021) proposed an esti-
mation method that will allow the covariates to enter nonparametrically 
in terms of treatment effect heterogeneity. The authors also provided a 
statistical package to facilitate the implementation of their approach.

IV. Conclusion

In this study, I review key ideas for the identification and estimation 
of fixed-effects models with heterogeneous coefficients. For one-way 
fixed-effects models, I discuss the identification strategies under strict 
and sequential exogeneity. For TWFE models, I provide a review in the 
context of DID models and emphasize that standard TWFE regression 
models are inconsistent for the ATT when the treatment effects are 
heterogeneous. Moreover, I discuss various alternative strategies for 
estimating the ATT consistently. Other references or the statistical 
packages provided by the authors can be used to obtain detailed 
information on the implementation steps.

(Submitted Jan 15, 2025; accepted Jan 15, 2025)
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