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This study comprehensively reviews recent developments in the 
application of the generalized instrument variable (GIV)  framework 
introduced by Chesher and Rosen (2017, Econometrica). The GIV 
framework effectively derives sharp bounds (equivalent to identified 
sets) in incomplete models. Focusing on limited dependent variable 
models with endogeneity, this study demonstrates the application of 
general identification results to obtain the identified set in specific 
settings. Moreover, practical implementation challenges that may 
arise are discussed, and potential strategies for overcoming them 
are highlighted in empirical research.
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I. Introduction

An instrumental variable method, which focused on estimating 
demand and supply curves of flaxseed, was first proposed by Wright 
(1928). The author emphasized that exogenous variations are necessary 
to identify the structural relationship between the outcome and the 
explanatory variables.  For instance, in the demand and supply system, 
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price and demanded quantity have simultaneous causality; thus, 
regressing quantity on price does not identify either the demand or 
supply curves. To determine demand, variations in the supply schedule 
are necessary, maintaining a constant demand curve. These exogenous 
variations can be provided by an observable variable, referred to as 
an instrumental variable (IV), which is excluded from the structural 
demand function but is correlated with the price, thereby affecting the 
demand. IV methods have long been popularized in applied studies, 
not only in economics but also in many other disciplines for causal 
identification.

IVs are straightforward to employ in linear regressions when the 
outcome and endogenous regressors are continuously distributed. 
Two-stage least squares (TSLS) and generalized method of moments 
(GMM) estimators are commonly applied in most empirical studies. 
However, when dealing with limited dependent variables, such as 
binary or discrete responses, the structural outcome equation naturally 
becomes nonlinear. In this case, substituting the endogenous variables 
in the nonlinear regression with their fitted values from the first stage 
regression, such as TSLS, does not work. Wooldridge (2010) referred 
to this attempt as the “forbidden regression.”  If the endogenous 
explanatory variables are continuous, then the control function (CF) 
approach (Blundell and Powell 2003) is a commonly used remedy. 
Instead of replacing the endogenous variables with their predicted 
values from the first stage auxiliary regression, the CF approach 
includes the estimated unobserved heterogeneity (regression residuals 
in the context of linear models) from the first stage into the nonlinear 
outcome regression.

The CF approach cannot be applied in nonlinear models when 
endogenous variables  are discrete because the regression residual 
in this case is not point identified. The CF approach relies on the 
invertibility of the first-stage regression, which is not satisfied in a 
nonlinear first stage.1 The CF approach also exhibits other undesirable 
features. For instance, it requires a triangular structure in which full 
simultaneity between variables is ruled out. The invertibility condition 

1 Recently, Han and Kaido (2024) propose a partial identification strategy 
using a set-valued control function in the context of treatment effect models. 
Their framework allows for rich heterogeneity in treatment effects, thereby not 
nested in the GIV model framework. 
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restricts the unobserved heterogeneity to be scalar.2 These limitations 
have led econometricians to develop more generally applicable 
methodologies within the IV framework.

Deviating from the triangular structure often fails to yield point 
identification. Econometricians previously believed that the model 
parameters were unidentified in this case, implying no useful methods 
are available to make inferences on the parameters.  However, early 
studies by Charles Manski, such as Manski (1990), Manski and Pepper 
(2000), and Manski (2003), changed this perspective by investigating 
informative bounds on the unidentified parameters of interest. 
These attempts laid the foundation for the development of partial 
identification. 

In the context of nonlinear IV models, Andrew Chesher and his 
coauthors have made significant contributions to the literature. Initially, 
separate investigations were undertaken to explore partial identification 
in each individual model. Specifically, the primary objective of such 
investigations is to obtain sharp bounds (equivalent to the identified 
set), which refer to the tightest possible bounds that exhaust all the 
information and restrictions imposed on the model. Chesher (2010) 
developed the bounds on structural parameters for threshold-crossing 
discrete response models and confirmed the sharpness of the bounds 
when the outcome is binary. Chesher and Smolinski (2012) focused on 
ordered outcome models and derived bounds on structural functions, 
which are sharp if either the outcome or the endogenous variable 
is binary. Subsequently, Chesher and Rosen (2017) introduced a 
generalized instrumental  variable (GIV) model framework that works 
for a broad class of models using mathematical theory of random 
sets. Their framework nests the single equation IV models studied in 
Chesher’s earlier work and allows for multidimensional unobserved 
heterogeneity.

The GIV framework can effectively obtain the identified sets without 
constructive proofs, which are often challenging and technically 
demanding. Chesher and Rosen (2017, CR17 henceforth) conducted 
an identification analysis of a highly general model under high-level 
conditions. This approach enables the framework to be applied to a 

2 More detailed discussions on the limitations of the CF approach can be 
found in Chesher (2009).
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broad spectrum of problems. However, for a specific model, meticulously 
tailoring the framework to carry out identification analysis is crucial. 
This study provides a comprehensive overview of recent applications of 
the GIV model framework for limited dependent variable models in a 
non-technical manner, specifically for the applied audience.3 Numerous 
studies have used the CR17’s framework for such models. Chesher, 
Rosen, and Smolinski (2013) investigated multinomial choice models, 
and Chesher and Rosen (2014) studied random coefficient binary 
outcome models. Kim (2020) focused on endogenous count data models. 
Kim (2023) leveraged the results from CR17 to derive the sharp bounds 
on marginal distributions of latent durations in competing risks models 
with discretely measured durations. Chesher, Kim, and Rosen (2023) 
applied the framework to censored outcome models.

II. GIV model framework 

Y and Z denote the observed endogenous and exogenous variables, 
respectively. U corresponds to a vector of unobserved factors representing 
unobserved heterogeneity. In the GIV models, the structural relationships 
among Y, Z, and U are determined by the structural function h, such 
that h(Y, Z, U) = 0 with probability 1. U is assumed to be scalar and Y = 
(Y1, Y2), where Y1 indicates a scalar binary outcome, and Y2 refers to a 
vector of endogenous regressors. Then, the structural function is defined 
as h Y Z U Y Y Z Uα β γ′ ′= − + + ≥1 2( , , ) 1 [ ] . When h(Y, Z, U ) = 0, 
the model can be rewritten as Y Y Z Uα β γ′ ′= + + ≥1 21 [ ] . When U 
is standard normally distributed and is independent of Z, the model 
becomes a standard probit model with endogeneity. One crucial feature 
of such a model is that it is incomplete in the sense that, given the 
values of Z and U, the Y values are not uniquely determined. 

Incompleteness is the consequence of imposing less restrictive 
assumptions in the model. However, they often fail to identify the 
structural function h unless the unobserved variable U is uniquely 
determined  by Y and Z.4 In this endogenous probit model, a range 
of values of U can be compatible with specific values of Y and Z. 

3 For more technical, extensive reviews, see Chesher and Rosen (2020).
4 If U is a single-valued function of Y and Z, then the CF approach can be 

used to identify the structural function assuming a triangular structure.  
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Suppose Y2 and Z are scalar and γ = 0. Then, Z satisfies the exclusion 
restriction. Given Y2 = 1, the value of Y1 only depends on U and the 
model parameters. Any value of U larger than α + β delivers Y1 = 0. 
When U ≤ α + β, Y1 becomes 1. In this case, U is a set-valued function of 
the observed variables. Thus, the set of values of U that are compatible 
with (Y, Z) can be defined as Y Z hU ( , ; ) , which is a random set given 
that Y and Z are random vectors. CR17 derives the identified set of the 
structural function h and the conditional distribution of U, given Z, 
using properties of random sets.

The key property used to derive the moment inequalities that 
characterize the sharp bounds is called Artstein’s inequality (Artstein, 
1983). S represents a closed subset of the support of U. In the probit 
example, the support of U is the real line (−∞, + ∞), and S is a closed 
interval [a, b]. For any S, the following inequality holds:

P U S Z z P Y Z h S Z z for all z∈ = ≥ ⊆ =U[ | ] [ ( , ; ) | ], .

In the probit example, the left-hand side (LHS) of the inequality is 
computed using an integral 

b

a
u duφ∫ ( ) , where ϕ(∙) denotes the standard 

normal density function. The right-hand side (RHS) is calculated by 
determining the Y values producing Y Z h a b⊆U ( , ; ) [ , ] , given that 
Z is irrelevant for determining U . This inequality must hold for any 
closed subset S. Thus, in general, an infinite number of inequalities 
are required to define the identified set. An innovation proposed by 
CR17 enables us to work on a smaller (and possibly finite) collection of 
S, referred to as core determining sets first proposed by Galichon and 
Henry (2011), to obtain sharp bounds. 

The collection of core determining sets can be obtained by considering 
the support of the random set Y Z hU ( , ; ) . In the probit example with 
binary variables, Y can take four  possible values, (0, 0), (0, 1), (1, 0), and 
(1, 1). Hence, the support of U  comprises four intervals, as shown in 
Table 1. Then, any connected unions of these intervals are core 
determining sets, except (−∞, + ∞) for which Artstein’s inequality trivially 
holds with equality. The core determining sets must be determined by 
the researcher in each model at hand, often a challenging task. The 
following section illustrates the identification results of a few specific 
models using Artstein’s inequality and core determining sets. 
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III. Recent applications

This section provides comprehensive illustrations of identification 
analysis using the GIV model framework for a binary response model, a 
count data model, and censored outcome model with endogeneity.

A. Binary response IV model

A generalized version of the example model used in the previous 
section is considered as follows: 

Y g Y U Z U= ≥ ╨1 21 [ ( ) ],

Chesher (2010) explored this model, in which the proof of the bound 
sharpness is constructive. Sharp bounds are derived using the GIV 
framework without a constructive proof. The threshold function g is 
non-parametrically specified; hence, U can be normalized and uniformly 
distributed in the unit interval [0, 1] without loss of generality.5 To 
simplify the exposition, suppose Y2 is binary and g(0) ≤ g(1). Table 2 
shows the four intervals of the U random set Y gU ( ; ) , namely, [0, 
g(0)], [0, g(1)], [g(0), 1], and [g(1), 1], in its support. These intervals are 
core determining sets that characterize the sharp bounds on g(0) and 
g(1). [0, g(1)] contains [0, g(0)], and their union is expressed as [0, g(1)]. 
Similarly, [g(0), 1] includes [g(1), 1], and their union is [g(0), 1]. The 
union of [0, g(0)] and [g(0), 1] is [0, 1], which is trivial. Similarly, all other 
combinations of the four intervals are either trivial or unconnected 

5 Let the true model be Y1 = 1[g*(Y2) ≥ ε] and let F(∙) be the cumulative 
distribution function (CDF) ε. Then Y1 = 1[F(g*(Y2)) ≥ F(ε)] = 1[g(Y2) ≥ U ], which is 
observationally equivalent to the true model. 

Table 1 
Support of the random Set U  in the probit example

Y U

(0,0) (α, + ∞)

(0,1) (α + β, + ∞)

(1,0) (−∞, α]

(1,1) (−∞, α + β]
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(e.g., the union of [0, g(0)] and [g(1), 0]). Therefore, applying Artstein’s 
inequality to the four intervals deliver the identified set of the threshold 
function g. 

Under independence restriction between Z and U, the LHS probability 
of Artstein’s inequality P U S Z z P U S∈ = = ∈[ | ] [ ]  is simply the 
length of the interval S given the uniform distribution of U. The RHS 
probability P Y g S Z z⊆ =U[ ( ; ) | ]  is computed by summing up 
the probabilities of the values of Y that deliver the U random set in 
the interval S. For instance, the interval [0, g(1)] contains [0, g(0)] 
delivered by Y = (0, 0) and [0, g(1)] provided by Y = (0, 1). Therefore, 
P Y g g Z z P Y Z z P Y Z z⊆ = = = = + = =U[ ( ; ) [0, (1)]| ] [ (0, 0)| ] [ (0, 1)| ] . 
The values of Y that deliver the U random set contained in each interval 
are displayed in Table 2. 

Given these results, deriving the sharp bounds on g(0) and g(1) is 
straightforward. For g(0), we only need Artstein’s inequalities with two 
intervals, [0, g(0)] and [g(0), 1], as follows:

P U g P Y g g Z z
g P Y Z z

∈ ≥ ⊆ = →
≥ = =

U[ [0, (0)]] [ ( ; ) [0, (0)] | ]
(0) [ (0, 0) | ],

P U g P Y g g Z z
g P Y or Z z
∈ ≥ ⊆ = →

− ≥ = =
U[ [ (0), 1]] [ ( ; ) [ (0), 1] | ]

1 (0) [ (1, 0) (1, 1)| ].

These inequalities hold for all z so the sharp bounds on g(0) is 
expressed as follows: 

z z
P Y Z z g P Y or Z z= = ≤ ≤ − = =sup [ (0, 0)| ] (0) 1 sup [ (1, 0) (1, 1)| ].

Likewise, the sharp bounds on g(1) is constructed as follows:

Table 2 
Values of Y that deliVer the u random set

U Y

[0, g (0)] (0, 0)

[0, g (1)] (0, 0), (0, 1)

[g (0), 1] (1, 0), (1, 1)

[g (1), 1] (1, 1)
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P U g P Y g g Z z
g P Y or Z z

∈ ≥ ⊆ = →

≥ = =
U[ [0, (1)]] [ ( ; ) [0, (1)] | ]

(1) [ (0, 0) (0, 1) | ],

P U g P Y g g Z z
g P Y Z z
∈ ≥ ⊆ = →

− ≥ = =

U[ [ (1), 1]] [ ( ; ) [ (1), 1] | ]
1 (1) [ (1, 1) | ].

Collecting the inequalities for all z, the sharp bounds on g(1) is derived 
as follows:

z z
P Y or Z z g P Y Z z= = ≤ ≤ − = =sup [ (0, 0) (0, 1)| ] (1) 1 sup [ (1, 1)| ].

Given the identification results, estimation and inference are relatively 
straightforward. The upper and lower bounds are easily estimated by 
taking maximums of empirical probability masses. The sharp bounds 
are constructed as an intersection of multiple bounds from each 
value of z. Therefore, the inference can be made using the method in 
Chernozhukov, Rosen, and Lee (2013), readily available in statistical 
packages such as Stata.  

B. Count data IV model

The binary choice model investigated in the previous example can 
be extended to accommodate other discrete outcomes such as ordered 
outcomes and count data. Kim (2020) derived the identified set in a 
nonparametric, nonseparable count data IV model. His results can be 
applied to ordered choice models because he formulated the count data 
model as a threshold-crossing ordered outcome model. For any non-
negative integer k, the model is specified as follows:

k kY YY k if p U p Z U+= ≤ < ╨2 1 21 ( ) ( ), ,

where U is normalized and uniformly distributed in the unit interval 
and p0(Y2) = 0. For modelling count data, generalized method of 
moments (GMM)-based approaches such as Mullahy (1997) and 
Windmeijer and Santos Silva (1997) are widely used. However, their 
approaches do not work under this threshold crossing model structure 
because the moment conditions they impose under strong separability 
are not satisfied. 

A binary Y2 is considered for exposition purposes. Then, the support 



59Recent ApplicAtions of GiV Models

of the U random set exhibits a collection of many intervals as follows: 

k kSupp p y p y k y+= ∈ ∈U 2 2 21( ) {[ ( ), ( )] : {0, 1, 2, }, {0, 1}} .

All the connected unions of elements in Supp U( ), denoted as 
U* , are 

core determining sets. Supp U( )  already provides an infinite number 
of moment inequalities; hence, it is computationally infeasible to deal 
with. Even with a bounded count outcome, the number of elements in 
U*  explosively increases as the upper bound of Y1 and the support of 
Y2 increase. To realize a computationally tractable model, Kim (2020) 
suggested the use of a subset of U* , which delivers an outer region (a 
set that nests the identified set). 

k kQ p y p y k y= ∈ ∈2 2 21{[0, ( )], [ ( ), ] : {0, 1, 2, }, {0, 1}} .

The number of elements in Q increases more gradually than U*, 
identifying computationally feasible structural functions. He further 
showed that the bounds obtained using the suggested subset Q are 
sharp under some shape restrictions.6 

Analogous to the binary outcome case, every threshold value is 
set-identified by moment inequalities. However, for elements in Q, 
computing the RHS of Artstein’s inequality, P Y h S Z z⊆ =U[ ( ; ) | ] , 
is not as straightforward. Consider deriving bounds on p5(1), given y2 = 1, 
any y1 ≤ 5 provides a U random set that is contained in [0, p5(1)]. A key 
difficulty arises when determining what values of y1 provide a U random 
set that lies within [0, p5(1)] when y2 = 0 because the ordering among 
the threshold values, given different values of y2, must be known. A 
particular ordering is considered, as follows: p7(0) ≤ p5(1) ≤ p8(0). Then, 
given y2 = 0, any y1 ≤ 7 provides a U set contained in the interval. The 
application of Artstein’s inequality yields the following: 

6 Kim (2020) confirmed that under the conditions of i) monotonicity: pk(0) ≤ 
pk (1) or vice versa and ii) complete separability: max {pk (0), pk(1)} ≤ min {pk+1(0), 
pk+1(1)}, the set Q is core-determining. Many parametric count data models 
satisfy monotonicity. Complete separability indicates that the impact of Y2 on 
the threshold values is close to zero. We parameterize the threshold functions 
as pk (y2) = F (k, exp(α + βy2)), where F is a CDF that belongs to a parametric 
family satisfying monotonicity. In applied studies, whether the identified set of β 
includes zero is often a primary concern. The set Q offers the sharp criterion to 
evaluate the values of β around zero.



60 SEOUL JOURNAL OF ECONOMICS

p P Y h p Z z P y y
z P y y

≥ ⊆ = = ≤ =
+ ≤ =





U 1 25 5

1 2

(1) [ ( ; ) [0, (1)]| ] [ 5
1| ] [ 7 0].

 

Similarly, the upper bound is obtained as follows: 

p P Y h p Z z
P y y z P y y
− ≥ ⊆ = =

≥ = + ≥ = 

U5 5

1 2 1 2

1 (1) [ ( ; ) [ (1), 1]| ]
[ 6 1| ] [ 8 0].

The bounds are derived given an ordering. For any specific structural 
function h*, the ordering among the threshold values is determined. If 
h* satisfies all the moment inequalities, then it belongs to the identified 
set (or an outer region). Therefore, under a nonparametric specification 
of h, all the possible orderings must be considered for identification. 
The number of orderings rapidly becomes astronomical as the supports 
of Y1 and Y2 increase.  Therefore, a parametric restriction, under which 
the ordering depends on a small number of parameters, is required in 
practical implementations for computational tractability. Kim (2020) 
imposed a Poisson and negative binomial restrictions in the application. 
Under parametric restrictions, the identified set can be computed by 
grid search. 

C. Censored outcome model

Chesher, Kim, and Rosen (2023) considered Tobit-type censored 
outcome models, in which the latent outcome Y1

* is only observed if it is 
greater than a fixed threshold value c as follows:

Y1 = max{c, Y1*},     Y1* = m(Y2, Z, U),

where the function m is continuous and strictly increasing in U. The 
model does not impose independence between U and Y2. Instead, a type 
of independence restriction on the conditional distribution of U given 
Z is imposed to obtain the identified set of the function m. The authors 
considered full independence, quantile independence, and conditional 
mean independence. This model is interesting in a theoretical point of 
view given that the censored outcome exhibits a probability point mass 
and continuous variations at the same time. Similar to the Gaussian 
Tobit model (Tobin 1958), which identifies the model parameters 
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without scale normalization (required for parametric binary outcome 
models such as probit and logit), the IV-censored outcome model can 
potentially identify the structural function m.

The key identification idea is illustrated using a simple running 
example where the function m is a standard linear additive function: 
Y1* = α + βY2 + U, the censoring threshold c is 0, and Z is an excluded 
instrument. An important aspect of this model is that the value of the 
unobserved variable U is identified by Y1 − α −βY2 when Y1 > 0. If the 
outcome is censored (Y1 = 0), then Y1

* = α + βY2+ U ≤ 0 is known and 
therefore the value of U belongs to (−∞, −α −βY2 ]. The identified set of 
the model parameters is characterized by moment inequalities and 
equalities because the U random set is either singleton or a semi-infinite 
interval.  

Two types of intervals are considered to derive the identified set. The 
first type is a finite interval [t1, t2 ], where t1 ≤ t2. This interval provides 
moment equalities when t1 = t2. Applying Artstein’s inequality to the 
interval yields the following:

P U t t Z z P t Y t Y Z zα β∈ = ≥ ≤ − − ≤ > =1 2 1 2 2 1[ [ , ]| ] [ 0 | ].

The case of Y1 = 0 is excluded in the RHS of the inequality given that 
the U random set given Y1 = 0 is semi-infinite and cannot be contained 
within [ t1, t2 ]. The second type of inequality is a semi-infinite interval (−∞, 
t]. Then, Artstein’s inequality provides the following:

P U t Z z P Y Y t Z zα β∈ −∞ = ≥ − − ≤ =1 2[ ( , ]| ] [ | ].7

The RHS of the inequalities is computed using data given (α, β). The LHS 
calculation depends on the conditional distribution restriction of U, conditional 
on Z. When U|Z ~ N (0, σ2 ), then P U t t Z z t tσ σ∈ = = Φ − Φ1 2 2 1[ [ , ]| ] ( ) ( )  
and P U t Z z t σ−∞∈ = = Φ([ , ]| ] ( ). In this example, t, t1, and t2 can 
take any real value, resulting in an uncountably infinite number of 
moment inequalities characterizing the identified set. Therefore, in 
practical implementations, a finite number of partitions can be used in 
the real line, i.e., using discrete values of (t, t1, t2).

7 The RHS of the inequality can also be written as follows: P [Y1> 0 ∩ Y1 − α −
βY2 ≤ t | Z = z] + P [Y1 = 0 ∩ − α − βY2 ≤ t | Z = z].
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If the researcher is not willing to impose full independence, then 
a weaker alternative is a quantile independence restriction, such as 
conditional median independence (med (U|Z = z) = 0). Under median 
restriction, P U Z z P U Z z∈ −∞ = = ∈ ∞ = =[ ( , 0] | ] [ [0, ) | ] 0.5  for all z. 
Hence, the following upper and lower bounds are obtained for 0.5:

P Y Y Z z P Y Y Yα β α β− − ≤ = ≤ ≤ − > − − >1 2 1 1 2[ 0 | ] 0.5 1 [ 0 0].

This restriction type can be imposed for other quantiles. Another 
possibility is the conditional mean independence restriction, E[U|Z = z] 
= 0. However, this restriction tends to deliver uninformative bounds. 

This model can potentially identify the structural function especially 
when m(Y2, Z, t) > 0 achieves probability 1 conditional on Z = z for a 
large value of t. This case exists when Y2 has a bounded support and 
m continuously increasing as t increases. However, this condition is 
difficult to verify in practice. Regardless of the identification status of 
the considered model, the framework of Chesher, Kim, and Rosen (2023) 
can robustly apply.

IV. Practical implementations and challenges

The identification results obtained via the GIV framework are highly 
potent. However, their practical implementation in empirical studies 
can pose significant challenges. This section discusses important 
challenges that arise when employing estimation and inference 
methods for partially identified parameters. In many instances, the 
computation of the identified set can be computationally intensive. 
Considering the illustrative binary outcome model presented in the 
preceding section, even without exogenous variables, the computation 
of the identified set becomes highly burdensome when Z is continuously 
distributed. The RHS of the conditional moment inequalities derived in 
the previous section represents the joint conditional probability that 
must be estimated from data, conditional on specific values of Z. A 
nonparametric estimation method, such as kernel and sieve estimation, 
can be employed. Then, as the number of variables in Z increases, the 
curse of dimensionality occurs.  

A more general linear Tobit model with included exogenous variables 
is considered as follows:
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Y Y Z Uα β γ′ ′= + + +*
1 2 ,

where Z is continuously distributed. Then, the moment inequalities 
must be computed on many different combinations of Z values, 
which can result in a very slow rate of convergence and astronomical 
computational burden. Chesher, Kim, and Rosen (2023) addressed this 
problem by discretizing the supports of Z. Alternatively, two indices, 
Z1

′γ1 and Z2
′δ where Z1 is a vector of included exogenous variables and Z2 

is a vector of excluded variables, can be considered, following the idea 
proposed by Lee and Chen (2019). This method does not, in general, 
deliver the sharp bounds but greatly reduces the dimensionality of 
the problem when the number of variables in Z is large, because the 
method relies only on two linear indices regardless of the dimensionality 
of the problem. 

Another important problem is the number of structural functions 
that need to be tested using moment inequalities. The RHS of moment 
inequalities are computed given a structural function h. They change 
their value for different structural functions. For instance, in the 
context of the exemplary binary choice model, the ordering between  
g(y2) matters. As the support of y2 increases, the number of possible 
orderings increases rapidly.8 In ordered choice and count outcome 
models, the increase becomes astronomical. Appropriate shape or 
parametric restrictions are necessary to achieve a computationally 
feasible problem. If parametric restrictions are imposed, then the RHS 
values of the inequalities depend on a vector of parameters θ. Moreover, 
the identified set is obtained via a brute-force method (e.g., grid search). 
The number of grid points grows exponentially as dim(θ) increases, 
requiring a more efficient algorithm. For instance, Kim (2020) and 
Chesher, Kim, and Rosen (2023) used a complete model that imposes 
more restrictive assumptions than the partially identifying model they 
considered to obtain a starting point for grid search. Subsequently, they 
explored around the starting point using a coarse grid to sketch the 
identified set, which is refined using a finer grid. The discovery of an 
algorithm that can rapidly determine the boundary of the identified set 
(or its convex hull if the identified set is not convex) would be a great 

8 Suppose Y2 can take M discrete values. Then the number of possible 
orderings is M!.
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innovation. 
The final practical concern involves the inference methods. The 

econometric literature on inference methods for partially identified 
parameters or structural functions by moment inequalities has 
advanced significantly over the past two decades. A comprehensive 
survey on this topic is provided by Canay, Illanes, and Velez (2023). The 
inference problem tends to be posed as follows:

Ep [m (Wi ; θ)] ≤ 0,

where Wi  = (Yi, Zi) represents the i.i.d. observed variables, P indicates the 
probability measure of Wi, θ refers to a vector of model parameters, and 
m(· ; ·) denotes the known moment function given θ. The identified set of 
θ is defined as follows: 

p iE m Wϑ θ θ ≤= ∈ Θ* 0{ : [ ( ; )] }.

An inference problem focuses on finding a confidence set Cn that 
asymptotically satisfies the following: 

nP Cθ α α∈ ≥ − ∈[ ] 1 , (0, 0.5)

for a pre-specified significance level α as the sample size n goes to ∞.
Among many available methods, three methods are implemented 

in Stata: i) Chernozhukov, Lee, and Rosen (2013), implemented by 
Chernozhukov, Kim, Lee, and Rosen (2015); ii) Andrews and Shi (2013), 
implemented by Andrews, Kim, and Shi (2017); iii) Cox and Shi (2023), 
implemented by Gong, Cox, and Shi (2024). The first two methods are 
widely used and easy to implement. However, they provide a confidence 
set for the joint identified set of the entire parameter vector, thereby 
suffering from projection conservatism.9 The third method is developed 
to overcome this problem, providing non-conservative inference for a 
subset of θ (so-called subvector inference). This method is relatively easy 
to use, free from tuning parameters, and computationally tractable. 

9 When the confidence interval of an individual parameter is obtained by 
projecting the joint confidence set, the resulting confidence interval can be very 
conservative (meaning that it can be very wide). This problem becomes more 
severe as the number of parameters in the model increases.
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However, this method may not work effectively for models with many 
moment inequalities. 

Other papers propose subvector inference methods, such as Bugni, 
Canay,  and Shi (2017), Belloni, Bugni, and Chernozhukov (2018), 
and Kaido, Molinari, and Stoye (2019). Among them, Belloni, Bugni, 
and Chernozhukov (2018) explored many moment inequalities and 
computationally tractable when the self-normalized critical value is 
used. However, their method may not be as robust as that of Cox and 
Shi (2023) because the method relies on the least favorable critical 
value.  These models can be more widely used in empirical research, 
following innovations in terms of computational tractability of 
estimation and inference procedures on the identified set. 

VI. Conclusions 

This study assessed the recent application of the GIV model 
framework to obtain sharp bounds on model parameters/structural 
functions. The GIV framework can effectively derive the sharp 
characterization of the identified set in weakly restrictive IV models. 
Furthermore, it can be applied beyond the context of IV models 
discussed in this study. For instance, the framework can deliver the 
identified set in incomplete auction models proposed by Haile and 
Tamer (2003), in a game-theoretic entry model with multiple equilibria 
considered by Kline and Tamer (2016) and Chesher and Rosen (2020), 
in dynamic empirical IO models (Berry and Compinani 2023), and in 
nonlinear panel models (Chesher, Rosen, and Zhang 2024).

The GIV model framework can be potentially used in empirical 
research because it covers a wide range of partially identifying models. 
However, the technical nature of the original paper by Chesher and 
Rosen (2017) can be a significant challenge for its potential users. The 
examples and discussions presented here aim to make the framework 
more accessible to applied researchers. The framework’s ability to 
unify and extend traditional IV analyses offers significant promise for 
researchers seeking partial identification tools across diverse empirical 
contexts.

(Submitted Jan 15, 2025; Accepted Jan 15, 2025)
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