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I. Introduction

The generalized method of moments (GMM) is a unifying estimation 
framework that efficiently combines information about the average 
behavior of economic variables to estimate parameters of interest 
defined by the underlying moment condition model. We focus 
on overidentified, nonsmooth (nondifferentiable), and potentially 
misspecified moment functions. Additionally, we investigate the 
convergence rates of one-step and two-step  GMM estimators through 
extensive simulations.

Under standard assumptions, the convergence rate of GMM 
estimators is n  regardless of whether the moment function is 
differentiable (Hansen 1982, Newey and McFadden 1994). However, 
when the moment condition is misspecified, the convergence rate 
can decelerate. While GMM estimators remain n  consistent and 
asymptotically normal when the moment function is smooth (Hall and 
Inoue 2003) or directionally differentiable (Kang and Lee 2024), they 
become n1/3 consistent when the moment function is nondirectionally 
differentiable (Hong and Li 2024).

Although not specific to GMM, other studies have also demonstrated 
that the convergence rate of an estimator can change under 
misspecification. Koo and Seo (2015) investigated this phenomenon in 
the context of structural break models. When the model is correctly 
specified or exhibits weak misspecification, such as an incorrect 
number of breaks, the estimator for the break location converges 
rapidly to the true breakpoint at a rate of n−1. However, under strong 
misspecification, such as when the true regression function is neither 
linear nor time invariant , the oracle property no longer holds. The 
convergence rate of the breakpoint estimator drops significantly, thus 
reaching n1/3 at most.

Similarly, Hidalgo, Lee, and Seo (2019) examined threshold models 
and found that the convergence rate of the breakpoint estimator is 
reduced to n1/3 if the model is continuous (e.g., a kink model) but the 
true restriction is not imposed during estimation.

Although Hong and Li (2024) theoretically established a the slower  
convergence rate for nonsmooth moments under misspecification, they 
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did not provide explicit simulation results.1 We address this gap by 
conducting an extensive simulation study to complement the theoretical 
results. We employ two simulation designs based on those in Hong and 
Li (2024): (i) a simple location model and (ii) an instrumental variable 
quantile regression (IVQR) model.

For the two-step efficient GMM estimator or the one-step GMM 
estimator with an estimated weight matrix, our simulation results align 
with the theoretical predictions. The outcome shows that the variance 
of the GMM estimator decreases at a rate of n−2/3.2 However, for the one-
step GMM estimator with the identity weight matrix, we observe that 
the convergence rate remains n  even under severe misspecification. 
This result  is unexpected because Theorem 1 of Hong and Li (2024) 
establishes the cubic-root convergence rate for GMM estimators with a 
fixed weight matrix.

II. Model and Estimator

The moment condition is given by 

iE g X θ =0[ ( , )] 0  

for a unique θ0, where g(Xi, θ) is a known function of the random 
variables Xi and the parameter of interest θ. The moment condition 
is just identified if dim(θ) = dim(g(x, θ)) and overidentified if dim(θ) < 
dim(g(x, θ)). An overidentified moment condition model is misspecified if

iE g X θ θ≠ ∀[ ( , )] 0, .

Notably, this type of moment misspecification can only happen 
in overidentified moment condition models. When the model is 
misspecified, the parameter of interest is set as the minimizer of the 
population GMM criterion function, which is referred to as the pseudo-
true value. We assume that the pseudo-true value is unique. Additional 

1 They only provide simulation results comparing the finite sample 
performance of their proposed rate-adaptive bootstrap with the standard 
bootstrap.

2 θ̂  denotes the GMM estimator and ( )V n θ θ≡ − >1/3
0

ˆvar ( ) 0 . Then, 
V nθ = 2/3ˆvar( ) .  
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details can be found in Kang and Lee (2024).
For observations indexed by i = 1,...,n, the one-step GMM estimator is 

defined as

n n ng W g
θ

θ θ θ′=1̂ arg min ( ) ( ) ,

where i
n

n i g Xg n θθ −
== ∑1

1 ( , )( ) , Wn is a positive definite weight matrix, 
which takes the form of i

n
i W Xn −
=∑1

1 ( ) , and W(Xi) does not depend 
on any unknown parameter. We consider two common choices: 1) Wn = 
I, identity matrix, and 2) i ii Z ZW X −′= 1( ) ( ) , where Zi is the instrument 
vectors.

The two-step efficient GMM is defined as

n n ng W g
�

� � ���2̂̂
ˆarg min ( ) ( ),

where n nW W �� 1
ˆ ˆ̂ ˆ )(  and

n
n i ii

W g X g X
n

θ θ θ
−

=

 ′=  
 
∑

1

1

  

1ˆ ( ) ( , ) ( , ) .

III. Nonsmooth Location Model

First, we consider a simple location model with i.i.d. data following 
Hong and Li (2024). Specifically, the data  are generated as

yi = θ0 + εi,     i = 1,...,n,

where εi~N(0, 22) and θ0 = 0. The baseline moment function is defined as

i
i

i

y
g y

y
θ τ

θ
θ

 
 
  

≤ −
=

−1
( )

( , )
.

Given that  the distribution of yi is symmetric, the moment condition is 
correctly specified if τ = 0.5. If τ ≠ 0.5, then the model is misspecified. We 
examine the effect of a misspecified nonlinear moment function (when τ 
≠ 0.5) by considering the following set of moment functions:
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The last equation of g2(yi, θ) imposes a condition that the variance of yi 
is four provided that θ is the mean. When τ ≠ 0.5, no parameter satisfies 
the first two equations of the moment condition simultaneously. Thus, 
the moment condition is misspecified. In this case, the pseudo-true 
value differs from the mean. The last equation does not hold either.

Next, we add potentially misspecified parameter-free moment 
functions (if τ ≠ 0.5):

i

i
i i

i
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θ τ
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θ
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≤ −
−
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,

where ix ∈ 5  is generated as

i

i
Nx

ε
×

  
  
  
            
  
  
    

6 1

1 0.5 0.4 0.3 0.2 0.1
0.5 1 0.5 0.4 0.3 0.2
0.4 0.5 1 0.5 0.4 0.3~ 0 ,
0.3 0.4 0.5 1 0.5 0.4
0.2 0.3 0.4 0.5 1 0.5
0.1 0.2 0.3 0.4 0.5 1

.

Given that E[xi] = 0, the last set of equations in i ig y x θ′ ′3(( , ) , )  is 
misspecified if τ ≠ 0.5.

We compare the finite sample behavior of the GMM estimator using 
nonsmooth moments with those using smooth moments. Thus, we 
consider the following moment condition:

i

i

i

i i
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g y x y
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′  
 
 

−
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4 ) ,(( , ) ( ) 4
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where the variables are generated as specified above.
For each set of moment conditions, we generate n = 200, 400, 800, 

1600, 3200, 6400 observations and estimate θ by one-step GMM with 
the identity matrix as the weight matrix and the two-step efficient GMM 
using the one-step GMM as the preliminary estimator. The number 
of Monte Carlo repetitions is 10,000. The simulation is conducted in 
MATLAB, where minimization is conducted using the fminunc function. 
The initial value of θ in the minimization problem is randomly generated 
from U[−1,1].

Table 1 shows the variance of the one-step and two-step GMM 
estimators under each set of the moment conditions with increasing 
sample size. The variance of the n -convergent estimator decays faster 
(n−1) than the n1/3-convergent estimator (n−2/3).

When the model is correctly specified (τ = 0.5), the variance of the 
estimator decreases inversely proportional to the sample size, which is 
consistent with theoretical predictions. This outcome holds regardless 
of the moment condition used and whether the estimator is one-step or 
two-step GMM.

By contrast , under misspecification (τ ≠ 0.5), the variance of the 
estimator does not decrease at the same rate as the increasing sample 
size. However, the simulation results show otherwise. For the one-
step GMM estimator θ1̂  with the identity matrix as the weight matrix, 
the variance decreases at the same rate as under correct specification. 
This finding differs from the theoretical results of Hong and Li (2024), 
who established a cubic-root convergence rate for the GMM estimator 
when a fixed weight matrix is used. In particular, Hong and Li (2024) 
considered a similar simulation setting (except for the variance of εi) 
to demonstrate the superior finite-sample coverage of their adaptive 
bootstrap confidence intervals (CIs) compared with standard bootstrap 
CIs. The results in Table 1 suggest that the improved performance of 
the adaptive bootstrap reported in their Table 1 may stem from factors 
other than the convergence rate, such as the recentering procedure 
when calculating the bootstrap GMM estimator.

Meanwhile, the variance of the two-step efficient GMM estimator θ 2̂
 

decreases at a slower rate than n−1, which is approximately n−2/3. Adding 
a nonlinear moment condition (g1 versus g2) does not significantly affect 
the convergence rate. However, adding misspecified moment conditions 
(g2 versus g3) generally slows the convergence rate further.

We illustrate the difference in the variance decay rates by normalizing 
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Table 1 
Variance of the GMM estiMator

g1 θ1̂ θ 2̂

τ   0.1   0.3   0.5   0.1   0.3   0.5

   n

  200 0.0205 0.0207 0.0202 0.1115 0.1187 0.0289

  400 0.0104 0.0103 0.0100 0.0787 0.0886 0.0166

  800 0.0054 0.0054 0.0050 0.0471 0.0570 0.0090

  1600 0.0027 0.0027 0.0025 0.0261 0.0319 0.0046

  3200 0.0014 0.0014 0.0012 0.0152 0.0178 0.0024

  6400 0.0008 0.0007 0.0006 0.0089 0.0103 0.0013

g2 θ1̂ θ 2̂

τ   0.1   0.3   0.5   0.1   0.3   0.5

   n

  200 0.0367 0.0383 0.0351 0.1097 0.1199 0.0315

  400 0.0166 0.0162 0.0132 0.0795 0.0893 0.0168

  800 0.0083 0.0071 0.0052 0.0487 0.0570 0.0089

  1600 0.0041 0.0034 0.0025 0.0275 0.0317 0.0045

  3200 0.0019 0.0017 0.0012 0.0155 0.0174 0.0024

  6400 0.0010 0.0008 0.0006 0.0090 0.0102 0.0013

g3 θ1̂ θ 2̂

τ   0.1   0.3   0.5   0.1   0.3   0.5

   n

  200 0.0372 0.0386 0.0357 0.1493 0.1268 0.0230

  400 0.0171 0.0166 0.0135 0.1202 0.0926 0.0115

  800 0.0084 0.0072 0.0053 0.0911 0.0570 0.0055

  1600 0.0042 0.0035 0.0025 0.0681 0.0274 0.0029

  3200 0.0020 0.0017 0.0012 0.0445 0.0131 0.0015

  6400 0.0010 0.0008 0.0006 0.0235 0.0083 0.0008

g4 θ1̂  θ 2̂

τ   0.1   0.3   0.5   0.1   0.3   0.5

   n

  200 0.0367 0.0367 0.0367 0.0158 0.0154 0.0154

  400 0.0138 0.0138 0.0138 0.0078 0.0075 0.0074

  800 0.0053 0.0053 0.0053 0.0038 0.0037 0.0036

  1600 0.0025 0.0025 0.0025 0.0019 0.0018 0.0018

  3200 0.0012 0.0012 0.0012 0.0009 0.0009 0.0009

  6400 0.0006 0.0006 0.0006 0.0005 0.0005 0.0004
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the variance relative to its value at n = 200 for each τ, n, and set of 
moment conditions. The results are presented in Figure 1. The left 
column shows the variance of the one-step GMM estimator with the 
identity weight matrix. Meanwhile, the right column displays the 
variance of the two-step efficient GMM estimator. Each row corresponds 
to one of the sets of moment conditions: g1, g2, g3, and g4.

The variance of the one-step GMM estimator with identity matrix 
decays at approximately an n−1 rate even under misspecification (τ 
= 0.1, 0.3). By contrast, the variance of the two-step efficient GMM 
estimator with nonsmooth moments decays significantly slowly under 

Figure 1 
Variance Decay rates of the one-step anD two-step GMM estiMators.  
first row (g1), seconD row (g2), thirD row (g3), anD fourth row (g4)
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misspecification.

IV.  Quantile Regression with Endogeneity

The IVQR was developed by Chernozhukov and Hansen (2005). They 
considered a model of quantile treatment effects (QTE) in the presence 
of endogeneity and derive the moment conditions that are necessary 
for the identification of QTE without imposing functional form 
assumptions. This approach provides economic and causal justification 
for estimation based on these restrictions.

We consider a linear quantile regression model with endogeneity 
characterized by the structural equation

 Y D U X U U X Z Uniformα β′ ′= +( ) ( ), | , ~ (0,1)       (1)

D U X Uτ α β′ ′+ ( ) ( )  strictly increasing in τ,

where Y is the scalar outcome variable of interest, U is an unobserved 
scalar random variable, and X is a vector of included control variables. 
The covariates D may not be independent of U. We assume that a vector 
of instrumental variables exists, as denoted by Z, which is excluded 
from equation (1) but affects the endogenous variables D with dim(Z) ≥ 
dim(D).

Under these assumptions, for τ ∈ (0, 1),

 [ ] [ ]P Y D X X Z P U X Zα τ β τ τ τ′ ′≤ + = ≤ =( ) ( ) | , | , .     (2)

In this model, α(τ) and β(τ) capture the effects of the covariates D 
and X on the outcome variable for an individual whose unobserved 
heterogeneity U is fixed at U = τ. By the definition of probability and 
the law of iterated expectation, (2) implies the following unconditional 
moment condition:

 ( )( )Y D XE α τ β ττ ′ ′≤ +− Ψ =( ) ( )[ 1 ] 0 ,        (3)

where 1(∙) is an indicator function and ( )X Z ′′ ′Ψ = ,  is a vector of 
instruments and covariates.

Given these moment conditions, GMM estimation is appropriate. 
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However, given that the moment function is discontinuous in the 
parameters of interest, applying conventional minimization techniques 
is challenging. Consequently, various methods for IVQR estimation have 
been developed.

Chernozhukov and Hansen (2006, 2008) proposed a method called 
inverse quantile regression (IQR), which estimates IVQR using the 
traditional quantile regression approach combined with a grid search 
algorithm. The IQR method is conducted as follows. The quantile 
regression objective function is defined as

( )n i i i i

n

i
Q Y D X

n ττ α β γ ρ α β γ
=

′ ′ ′= − − − Φ∑
1

1 ˆ( , , , ) : ,

where i i if X Z′Φ ≡ˆ ( , )  is a dim(α)×1 vector of (transformations of) 
instruments. The check function ρτ is defined as ρτ(u) = u(τ − 1{u < 0}) for 
u ∈ .

For a given value of the structural parameter α, the ordinary quantile 
regression is run using the objective function above. Then, a value 
of α is obtained, which minimizes the coefficient on the instrumental 
variable, γ α τˆ ( , ) , as close to 0 as possible. Formally, we have

A
�

� � � � � � � �
�

��
A

ˆ̂̂ ˆˆ( ) arg inf ( , ) ( , ),

where ( ) nQ
β γ

β γβ α τ γ α τ τ α
∈ ×

=
 ( , )

( , )ˆ ˆ( , ), ( , ) arg inf , ,

where A is any positive definite matrix and , , and   are compact 
parameter spaces. The IQR estimator, which is denoted by iqrθ τˆ ( ) , is 
defined as

� �iqr� � � � � � � ��ˆ ˆˆˆ̂( ) ( ), ( ( ), ) .

Kaplan and Sun (2017) proposed another method, namely, smoothed 
IVQR (SIVQR). This approach smoothens the underlying moment 
condition by applying a kernel to the indicator function in (3). Replacing 
1(∙) with a similar but continuously differentiable function ⋅1( )  enables 
GMM estimation based on smooth moment conditions. When the 
model is overidentified with dim(Z) > dim(D), they transform the original 
moment condition (3) into
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( )E Y D Xτ α τ β τ′ ′− ≤ + Φ =
[ 1( ( ) ( ))] 0

where ( )D X ′′ ′Φ = ˆ ,  and D̂  is a linear transformation of X and Z that 
has the same dimension as D. This transformation results in an exactly 
identified model with the transformed instrument vector Φ . IQR and 
SIVQR use the transformed instruments obtained from the least 
squares projection of D onto Z and X in practice. Section IV. B and 
Kaplan and Sun (2017) provide further details.

Machado and Santos Silva (2019) proposed an estimator for 
conditional quantiles by combining estimates of the location and scale 
functions, which is referred to as the method of moments-quantile 
regression (MM-QR). The conditional location-scale model is given by

Y X X Uβ σ γ′ ′= + ( ) ,

where Y is the scalar outcome variable, X includes the endogenous 
variable D and other exogenous covariates, and σ(∙) is a known function.

Based on the normalization of the unobserved random variable U, 
Machado and Santos Silva (2019) used the moment conditions  E[ZU] = 
0 and E[Z(|U|−1)] = 0 with instruments Z to obtain consistent estimates 
of β and γ under very general conditions by applying GMM.

Given the estimates of β and γ, q(τ) can be estimated using the 
following moment condition:

Y XE q
X

βτ τ
σ γ

  
      

′−− ≤ =
′

1 ( ) 0
( )

,

where traditional quantile regression can be applied to the estimated 
residuals. By combining β̂ , γ̂ , and q τˆ( ) , the estimates of the desired 
regression quantile coefficient can be obtained.

The estimators obtained through these methods are not IVQR 
estimates within the classical GMM framework, which directly uses the 
moment conditions in equation (3) for GMM estimation. We investigate 
the convergence rates of the estimators obtained through these 
various estimation methods compared with the GMM estimator under 
misspecification.
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A. Simulation Results for IVQR

The data-generating process for IVQR estimation, as given in Hong 
and Li (2024), is as follows. For α0 = β0 = 1,

i

i i i i

i

u
y D u D N

W

δ
α β

δ

      
      = + +       

            

0 0

0 1 0
, ~ 0 , 0 1 0.5

0 0.5 1
.

Therefore,

i i i i i iy D W N D D Wα β δ δ  + + − + −  
  

2
0 0

2 4 4| , ~ , 1
3 3 3

.

Considering median regression, the population moments for 

i i iz D W ′= (1 )  and θ α β ′= ( , )  are given by

i i i

i

i i i

y D W i i i

D D W
z

E y D z

E F y D z

E
α α β β δ

δ

π θ α β

α β

  
  
   

  
  
   

    − + − + −    
    − Φ

   
−   

   

= − ≤ +

= − ≤ +

=
0 0

2

| ,

2 4( )
1 3 3 .
2 41

3

1( ) 1( )
2

1 ( )
2

At the true parameter values, the population moments become

i i

i

D W
E z

δ
π θ

δ

    −    
    = − Φ

   
−   

   

0
2

2 4
1 3 3( )
2 41

3

where Φ(∙) is the cumulative standard normal distribution function. This 
model is correctly specified for median regression when δ = 0. However, 
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when δ ≠ 0, the model becomes misspecified.
We generate n = 200, 400, 800, 1600, 3200, 6400 observations and 

vary the degree of misspecification by setting δ = 0, 0.1, 0.2, 0.4, 0.6 to 
estimate α0 and β0. The exact computation of the GMM estimator for 
IVQR models follows a mixed-integer quadratic programming approach, 
as proposed by Chen and Lee (2018). Two types of one-step GMM 
estimators are considered:

1. Fixed Weight: Uses the identity matrix as the weight matrix.
2. Estimated Weight: Employs the following weight matrix:

 i iW n z zτ τ − −′= − ∑1 1ˆ [ (1 ) ]  

The simulation is conducted in MATLAB using Gurobi as the 
numerical solver. The time and gap are set to zero to ensure full 
convergence. The number of Monte Carlo repetitions is 1,000.

Table 2 reports the variance of the GMM estimators in median 
regression as the sample size increases. Results are presented only 
for the coefficient of the variable of interest, Di. For one-step GMM 
estimators with fixed weight ( f i xedβ̂ ) and estimated weight (

estβ̂ ), 
the variance decreases at the rate of n−1 when the model is correctly 
specified (δ = 0).

By contrast, under misspecification (δ = 0.1, 0.2, 0.4, 0.6), 
the convergence rate of estβ̂  approaches n−2/3 as the degree of 
misspecification increases. However, regardless of the value of δ, the 
convergence rate of f i xedβ̂  consistently remains at n−1/2. These results 
align with the simulation findings from the previously discussed 
location model.

This phenomenon is clearly demonstrated in Figure 2. We highlight 
the differences in variance decay rates by normalizing the variance 
relative to its value at n = 200 for each sample size and each δ. Under 
misspecification, the variance of the one-step GMM estimator decays at 
approximately an n−1 rate. However, the convergence rate of the efficient 
GMM estimator gradually decreases as δ increases and eventually 
reaches the n−2/3 rate only when δ is sufficiently large, thus indicating 
strong misspecification.

Additionally, we calculate the MM-QR estimator proposed by 
Machado and Santos Silva (2019) using the same DGP, which applies 
GMM estimation with a directionally differentiable moment condition. 
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In STATA, the ivqreg2 command provides an accessible way to compute 
MM-QR using the identity function as the scale function. Similar to 
the previous analysis, the simulation is conducted with n = 200, 400, 
800, 1600, 3200, 6400 and δ = 0, 0.1, 0.2, 0.4, 0.6. Each simulation is 
repeated 1,000 times. For a fair comparison, we report the estimation 

Table 2 
Variance of the iVQr-GMM estiMator

f i xedβ̂

δ 0 0.1 0.2 0.4 0.6

   n

200 0.00884 0.00966 0.01039 0.01472 0.02122

400 0.00417 0.00452 0.00569 0.00803 0.00982

800 0.00221 0.00257 0.00279 0.00415 0.00445

1600 0.00110 0.00129 0.00150 0.00215 0.00095

3200 0.00052 0.00061 0.00075 0.00065 0.00035

6400 0.00027 0.00033 0.00043 0.00018 0.00016

estβ̂

δ 0 0.1 0.2 0.4 0.6

   n

200 0.00871 0.00935 0.01065 0.01817 0.03065

400 0.00409 0.00459 0.00580 0.01040 0.01887

800 0.00215 0.00247 0.00346 0.00626 0.01177

1600 0.00101 0.00131 0.00183 0.00364 0.00731

3200 0.00053 0.00069 0.00109 0.00203 0.00412

6400 0.00025 0.00039 0.00061 0.00137 0.00252

Figure 2 
Variance Decay rates of the iVQr one-step GMM estiMators
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results for β0 in the median regression.
Table 3 presents the variance of the one-step MMQR estimator β1  

and the two-step MMQR estimator β2  as the sample size increases. 
The variance of β1  and β2  decays at approximately an n−1 rate as n 
increases for any value of δ. According to Kang and Lee (2024), when 
GMM estimation is conducted using a nonsmooth but directionally 

Table 3 
Variance of the MMQr estiMator

1β  (One-step)

δ 0 0.1 0.2 0.4 0.6

   n

200 0.00583 0.00595 0.00630 0.00792 0.01183

400 0.00279 0.00286 0.00303 0.00380 0.00546

800 0.00139 0.00141 0.00149 0.00183 0.00259

1600 0.00074 0.00075 0.00079 0.00097 0.00138

3200 0.00034 0.00034 0.00036 0.00046 0.00067

6400 0.00018 0.00019 0.00019 0.00024 0.00033

2β  (Two-step)

δ 0 0.1 0.2 0.4 0.6

   n

200 0.00526 0.00530 0.00562 0.00765 0.01233

400 0.00255 0.00261 0.00281 0.00382 0.00603

800 0.00124 0.00128 0.00139 0.00189 0.00289

1600 0.00067 0.00068 0.00072 0.00097 0.00152

3200 0.00031 0.00032 0.00035 0.00050 0.00079

6400 0.00016 0.00016 0.00017 0.00024 0.00040

Figure 3 
Variance Decay rates of the one-step anD two-step MMQr estiMators
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differentiable moment condition, the convergence rate of the estimator 
should be n−1/2 regardless of whether the model is correctly specified 
or misspecified. The simulation results align with this theoretical 
expectation.

Figure 3 illustrates the variance of the MMQR estimator, which is 
normalized to its value at n = 200. Unlike the results of exact GMM 
estimation (Chen and Lee, 2018), the MMQR estimator demonstrates 
that the convergence rate of the variance is approximately n−1 regardless 
of whether fixed or estimated weights are used or has the value of δ.

B.   Transforming Overidentified Moment Conditions into Exactly Identified 
Ones

Chernozhukov and Hansen (2006) and Kaplan and Sun (2017) 
proposed a transformation of overidentified moment conditions into 
exactly identified moment conditions in quantile regression models 
with endogeneity. While this transformation may offer computational 
advantages, it may also obscure potential misspecification in the 
original overidentified moment condition model.

For illustration, we consider the following simple linear model with no 
constant and endogeneity:

Y = Dβ0 + e,   E[De] ≠ 0.

For two instruments, namely, Z1 and Z2, E[Z1e] = 0 but E[Z2e] ≠ 0. In 
other words, Z1 is a valid instrument, whereas Z2 is not. Both instruments 
satisfy the relevance condition: E[Z1D] ≠ 0 and E[Z2D] ≠ 0. Then, the 
moment condition given by

Z Y D
E

Z Y D
β
β

− 
 − 

1

2

( )
( )

is misspecified because β does not simultaneously satisfy the moment 
condition. The IV estimands are

E Z YE Z Y
E Z D E Z D

β β= = *21
0

1 2

[ ][ ] ,
[ ] [ ]

and β0 ≠β
*. We consider a transformation of the original overidentified 

moment condition into the exactly identified moment condition via a 
1×2 matrix Π = (π1, π2):
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 [ ]Z Y D
E E Z Y D Z Y D

Z Y D
β

π β π β
β

 − 
Π = − + −  −  

1
1 1 2 2

2

( )
( ) ( )

( ) .      (4)

By solving this moment condition, we find that (4) equals to zero at

E Z DE Z D
E Z D E Z D E Z D E Z D

ππβ β β
π π π π

= +
+ +

*2 21 1
0

1 1 2 2 1 1 2 2

[ ][ ]
[ ] [ ] [ ] [ ]

,

where π β β≠ ≠2 00, . Therefore, the exactly identified moment 
condition holds at a parameter value, which is different from the true 
value. However , the standard specification tests, such as the J test, 
cannot be applied to the exactly identified moment condition.

By transforming the instruments using the least squares projection 
of D onto Z1 and Z2, an overidentified model can be converted into 
a just-identified model. Given that a β that satisfies such moment 
conditions always exists, moment misspecification, which can occur in 
overidentified models, cannot arise.

Moreover, the IQR method proposed by Chernozhukov and Hansen 
(2006) is not a GMM estimator in finite samples3 because it relies on 
grid search for estimation. Similarly, the SIVQR method proposed 
by Kaplan and Sun (2017) is not a GMM estimator with nosmooth 
moments because it smoothens the indicator function using a kernel. 
Thus, estimating IVQR using the methods of Chernozhukov and 
Hansen (2006) and Kaplan and Sun (2017) does not align with the 
misspecification scenario considered in Hong and Li (2024). 

This outcome implies that both estimators obtained using these two 
methods exhibit standard n  consistency even under misspecification.

C. Simulation Results for IQR and SIVQR

We examine the convergence rate of each estimator when the IVQR 
model is estimated using the methods proposed by Chernozhukov and 
Hansen (2006) and Kaplan and Sun (2017). In addition, we consider the 
following DGP from Kang and Lee (2024):

yi = −1 + Di + δ(z1i − z2i) + (1 + Di)εi ,

3 However, it is asymptotically a GMM estimator.
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Di = Φ(z1i + z2i + z3i + νi),

where (Z1i, Z2i, Z3i)~N(0, I3) and (εi, νi)~N(0, I2). δ is a parameter that 
controls misspecification, where δ = 0 represents a correctly specified 
model. Meanwhile, any other value indicates a misspecified model.

If δ = 0, the above model can be rewritten using the Skorohod 
representation as follows:

 yi = α0(U) + β0(U)Di  ,     (5)

where U = Fε(ε) with Fε being the cumulative distribution function of the 
unobservable ε. Moreover,

α0(τ) = −1 + Fε
−1(τ),  β0(τ) = 1 + Fε

−1(τ).

We generate n = 200, 400, 800, 1600, 3200, 6400 observations and 
consider τ = 0.25, 0.5, 0.75. The number of Monte Carlo repetitions is 
10,000. The simulation is conducted in STATA. Estimation using the 
IQR method of Chernozhukov and Hansen (2006) is performed with the 
ivqregress iqr command. Meanwhile, the SIVQR method of Kaplan and 
Sun (2017) is implemented using the ivqregress smooth command. Both 
estimators estimate α0(τ) and β0(τ) in (5).

In Table 4, the variance of IQR and SIVQR estimator decreases at a 
rate of n−1 regardless of the value of δ. As explained in Section IV. B, 
IQR and SIVQR transform the overidentified model into a just-identified 
model through linear projection, which prevents the slowdown in the 
convergence rate of the estimator under moment misspecification.

Figure 4 shows the variance of the IQR estimator in the left column 
and the variance of the SIVQR estimator in the right column. Each 
row corresponds to the results for the 0.25, 0.5, and 0.75 quantiles, 
respectively. We normalize the variance relative to its value at n = 200 
for each τ, n and δ. We can confirm that, regardless of whether the 
model is correctly specified or misspecified, the variance of the estimator 
decreases inversely proportional to the sample size.

V. Conclusion

We investigate the convergence rate of the one-step and two-step 
GMM estimators with nonsmooth moment functions by considering 
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potential misspecification of the moment condition model. Most results 
are consistent with theory. For directionally differentiable (e.g., check 
function) moment functions, the variance of GMM estimators decreases 
at the standard n−1 rate regardless of misspecification (Hall and Inoue 
2003; Kang and Lee 2024). By contrast, the variance of the GMM 
estimator with nondirectionally differentiable (e.g., indicator function) 

Table 4 
Variance of the iQr anD siVQr estiMators for β0(τ)

τ = 0.25
î qrβ ˆ

sivqrβ

δ 0 0.1 0.2 0.3 0 0.1 0.2 0.3

  n

200 0.2125 0.2149 0.2242 0.2374 0.1758 0.1790 0.1864 0.1982

400 0.1092 0.1100 0.1140 0.1210 0.0924 0.0935 0.0970 0.1032

800 0.0534 0.0543 0.0564 0.0599 0.0464 0.0470 0.0488 0.0518

1600 0.0266 0.0271 0.0284 0.0301 0.0237 0.0241 0.0250 0.0266

3200 0.0135 0.0137 0.0142 0.0150 0.0122 0.0123 0.0127 0.0135

6400 0.0069 0.0069 0.0072 0.0076 0.0062 0.0063 0.0066 0.0070

τ = 0.50 î qrβ ˆ
sivqrβ

δ 0 0.1 0.2 0.3 0 0.1 0.2 0.3

  n

200 0.1827 0.1847 0.1904 0.2034 0.1564 0.1580 0.1635 0.1733

400 0.0924 0.0934 0.0972 0.1053 0.0799 0.0816 0.0854 0.0914

800 0.0449 0.0453 0.0469 0.0506 0.0395 0.0398 0.0415 0.0445

1600 0.0223 0.0228 0.0238 0.0253 0.0201 0.0204 0.0212 0.0226

3200 0.0114 0.0117 0.0122 0.0131 0.0104 0.0106 0.0111 0.0118

6400 0.0058 0.0058 0.0061 0.0065 0.0053 0.0054 0.0056 0.0059

τ = 0.75 î qrβ ˆ
sivqrβ

δ 0 0.1 0.2 0.3 0 0.1 0.2 0.3

  n

200 0.2172 0.2190 0.2251 0.2394 0.1789 0.1811 0.1875 0.1983

400 0.1054 0.1067 0.1122 0.1185 0.0901 0.0915 0.0956 0.1019

800 0.0535 0.0546 0.0560 0.0589 0.0463 0.0470 0.0486 0.0514

1600 0.0267 0.0271 0.0281 0.0297 0.0236 0.0238 0.0247 0.0263

3200 0.0136 0.0138 0.0142 0.0149 0.0122 0.0124 0.0128 0.0136

6400 0.0067 0.0068 0.0070 0.0074 0.0061 0.0061 0.0063 0.0067
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moment functions decreases at the n−2/3 rate under misspecification. 
Thus, the theoretical findings of Hong and Li (2024) are confirmed.

However, one exception exists. Our simulation results indicate 
that the variance of the one-step GMM estimator with the identity 
weight matrix decreases at the standard n−1 rate even under severe 
misspecification. The cause of the discrepancy between the theory and 
the finite-sample simulation results warrants further investigation.

(Submitted Jan 15, 2025; Accepted Jan 15, 2025)
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