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I. Introduction

Since the publication of the seminal paper by Koenker and Bassett 
(1978), quantile regression (QR) has become a popular approach 
in empirical studies in the field of economics. Using QR, one can 
investigate the heterogeneous effects of covariates on outcomes across 
their distribution. Such heterogeneous effects, if they exist, can provide 
a rich set of policy implications that can be difficult to provide with 
the mean regression (e.g., Bitler et al. 2006, 2008). However, given 
that endogeneity is prevalent in observational settings and causes 
inconsistency of QR estimators, many studies have considered 
instrumental variable estimation within the QR framework.1

The main goal of this paper is to provide a tractable nonparametric 
estimation and inference approach for QR with endogenous regressors. 
Specifically, we develop inference methods for the nonparametric QR 
model of Lee (2022) , who extended the semiparametric QR model 
with the endogenous regressors of Lee (2007). In this work , we use a 
triangular system of equations, in which the reduced-form equations for 
endogenous regressors are specified. Based on the triangular system, 
we apply a control function approach to identifying the structural 
functions, as in Newey et al. (1999), Lee (2007), Chernozhukov et al. 
(2015), and Lee (2022).

Our estimation strategy relies on the methods of sieves, which allow 
for flexible modeling and provide a tractable estimation strategy (cf. 
Chen 2007). Specifically, we consider the penalized sieve minimum 
distance (PSMD) estimator of the unknown infinite-dimensional 
parameter proposed by Chen and Pouzo (2015) and develop the 
asymptotic theory, including consistency, convergence rates, and 
asymptotic normality.

The multiple-step estimation procedure is commonly used when 
the model parameters are identified via a control function approach 
(e.g., Newey et al. 1999; Das et al. 2003; Newey (2009); Chernozhukov 
et al. 2015). In such cases, the issue of generated regressors must be 
considered, and there are several important papers in the literature 
that address this issue  (e.g., Ackerberg et al. 2012; Mammen et al. 

1 Please refer to Chernozhukov and Hansen (2013) for an excellent review on 
QR with endogeneity.
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2012; Hahn and Ridder 2013; Hahn et al. 2018). In particular, the two-
step sieve estimation approach developed by Hahn et al. (2018) can be 
adapted to our context. However, there are several advantages of our 
approach compared to that of Hahn et al. (2018). First, our inference 
theory is valid regardless of whether or not the functional of interest 
is n -estimable, where n  denotes the number of observations. A 
functional that is n -estimable is called a “regular functional.” If it 
is not n -estimable, we call it an “irregular functional.” While it is 
already challenging to verify whether a functional of interest is regular 
or irregular in actual practice, this may even be worsened when the 
model is highly nonlinear.  The general inference theory developed in 
Chen and Pouzo (2015) can be applied to both regular and irregular 
functionals. Consequently, the inference methods in this paper are also 
applicable to both regular and irregular functionals and have a wide 
applicability. Meanwhile, Hahn et al. (2018) focused on inference on 
regular functionals based on a two-step estimation procedure.

Second, we establish the asymptotic distribution of sieve quasi-
likelihood ratio (QLR) test statistics, which do not require the estimation 
of the asymptotic variance of the specific functional’s estimator. It is 
well known that the asymptotic variance of a QR estimator typically 
involves the conditional density function of the outcome variable 
given covariates. Although this infinite-dimensional parameter may be 
cumbersome to estimate in practice, one can circumvent the estimation 
of the asymptotic variance by using some proper QLR statistics.

Finally, when we use a semiparametric model, the sieve estimators 
of finite-dimensional parameters become semiparametrically efficient. 
Although our main focus is on nonparametric QR models, one can 
impose some semiparametric structure on the model to avoid the curse of 
dimensionality. Using two-step semiparametric estimators can achieve 
semiparametric efficiency. However , as pointed out by Lee (2023), there 
is no result on the semiparametric efficiency of the two-step estimator 
in our context. Overall, the inference theory developed in this paper is 
easy to implement and useful for practitioners.

We also conduct a Monte Carlo simulation study to investigate the 
finite-sample performance of the PSMD estimator. The simulation 
results show that the PSMD estimator performs well in finite samples.

The rest of this paper is organized into sections. Section 2 
introduces the model and briefly discusses the identification and 
PSMD estimation procedure. Section 3 develops the asymptotic 
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theory for the PSMD estimator. The Monte Carlo simulation study is 
presented in Section 4, and Section 5 concludes this work. All 
mathematical proofs are provided in the Appendix.

We introduce several notations used throughout the paper. For a 
generic random variable A, the support of A is denoted by Supp(A) . For 
two random variables A and B, and for any τ ∈ (0, 1), QA|B (τ|b) indicates 
the τ-th conditional quantile of A on B = b, and FA|B (a|b) is the 
conditional distribution function of A given B = b. Furthermore, ⋅ [ ]  
is the expectation operator. For any positive real sequences {an } and {bn }, 

n na b  means that there exist finite constant C > 0 and N ∈   such 
that an ≤ Cbn for all n ≥ N. If n na b  and 

n nb a , it is denoted by 

n na b .
 

II. Model and PSMD Estimation

A. Model and Identification

Recall the triangular model for QR in Lee (2022): for each τ ∈ (0, 1),

Y = g(X, Z1 ; τ) + U(τ),
	 X = h(Z) + V, � (1)

where z zzx d dddX Z Z Z Z +′ ′ ′∈ ∈ ≡ ∈   1 21
1 1 2, , ( , ) . In addition, U(τ) 

and V are unobserved error terms that are scalar, and Z2 is a vector 
of excluded variables such that zdZ ∈  2

2  and dz2 
≥ dx. We call the 

first and second equations in Model (1) the outcome equation and the 
reduced-form equation, respectively .

To allow for the endogeneity of X, we assume that U(τ) and V can be 
correlated. The functions g and h are the parameters of interest that are 
nonparametrically specified, and researchers can only observe (Y, X′ Z′)′   
from the data.

Suppose that h( ∙ ) is identified from the reduced-form equation. We 
further assume that

	 U Z V U VQ Z V Q Vτ ττ τ=( ) | , ( ) |( | , ) ( | ), � (2)

and that QU ( τ ) | V (τ|V) is a function of V . Then, we have
 
	 U X Z U X V U VQ X Z Q X V Q Vτ τ ττ τ τ= =( )| , ( )| , ( )|( | , ) ( | , ) ( | )� (3)



5Nonparametric Inference for Quantile Regressions

As a result, we have the following model restriction:

	 Y X Z V X Z V g X Z r VQ τ ττ = +1| , , | , , ( , ; ) ( ; ),( ) � (4)

where r (V ; τ) ≡ QU ( τ )|V (τ | V) is an unknown function of V. The following 
set of conditions is from Lee (2022).

Assumption 2.1. The following conditions hold:
(i) There exists a known x z Supp X Z′ ′ ′ ∈1 1( , ) ( , )  such that g x z τ =1( , ; ) 0;
(ii) g (X, Z1), r (V), and h (Z) are differentiable;
(iii) The boundary of Supp (Z, V) has zero probability;
(iv) The function h(∙) is identified over the support of Z;
(v) For each τ ∈ (0, 1) , U Z V U VQ Z V Q Vτ ττ τ=( )| , ( )|( | , ) ( | )  almost 

surely; and

(vi) x
h Zrank d
Z

  
      

∂ = =
∂ 2

( )Pr 1  .

Notably, Assumption 2.1(iv) is a high-level but mild condition. Here, one 
can impose the conditional mean independence between Z and V, as in 
Newey et al. (1999), or the conditional quantile independence, as in Lee 
(2007). Assumption 2.1(vi) is a nonparametric rank condition similar to 
that in Newey et al. (1999) and is the key identifying assumption. For a 
detailed discussion on Assumption 2.1, one can refer to Lee (2022).

Proposition 2.1. (Theorem 2.1 in Lee (2022)) Suppose that Assumption 
2.1 holds. Then, g, r, and h are nonparametrically identified over their 
support.

B. Penalized Sieve Minimum Distance Estimation

Let g0, r0, and h0 be the true parameter values for g, r, and h, 
respectively. Let α denote the vector of parameters (i.e., α ≡ (g, r, h)′ ), and 
α0 denote the true parameter vector.

We also denote the parameter spaces for g, r, and h by  ,  , and 
 , respectively. Then, we define the parameter space for α as the 
Cartesian product of  ,  , and  , and denote it by  . We also let {Wi 
≡ (Yi, Xi′, Zi′ )′ : i = 1, 2,...,n} be the data and τ ∈ (0, 1) be given. Thus, we 
consider the following conditional-moment restriction:
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� (5)
	

m X Z W X Z Y g X Z
r X h Z X Z

τ τα ρ α τ
τ τ
≡ = ≤ +

− −
  1( , ; ) [ ( ; )| , ] [1( ( , ; )

( ( ) ; )) | , ],

where 1( ∙ ) is an indicator function. Under the identification conditions, 
we have mτ(X, Z ; α) = 0 almost certainly in X and Z if and only if α = α0. 
For notational simplicity, we let m(∙, ∙ ; ∙) = mτ(∙, ∙ ; ∙) for a given value of τ.

The PSMD sieve estimator of α0, denoted by  ân, is defined as follows:

	
n

n i i i i n i i

n n

n

n
in
m X Z X Z m X Z

n
P

�

� �

� �

�

�

�

� �
� ��� �� �� �

� ��� �

� 
 �
A

11 ˆ̂ ( , ; ) ( , ) ( , ; )
,

ˆ ( )

ˆ ˆarg inf ˆ  �(6)

where nm x z αˆ ( , ; )  is a consistent estimator of m(x, z ; α), n x zΣ ( , )ˆ  is 
a consistent estimator of the positive definite matrix ∑ (x , z ), 

nP α ≥ˆ ( ) 0  
is a possibly random penalty function, and λn is a positive real sequence 
such that λn ↓ 0. Furthermore, n  is a sieve space for the parameter 
space  .

To obtain the PSMD estimator ân, we need to consider a 
nonparametric estimator of m(X, Z ; α). In this paper, we use the series 
estimation to consistently estimate m(X, Z ; α). Specifically, a series 
estimator nm X Z αˆ ( , ; )  is given by

	 n n

n
J J

n i i i
i

m X Z b X Z B B b X Z Wτα ρ α−

=

′ ′≡ ∑
1

ˆ ( , ; ) ( , ) ( ) ( , ) ( ; ),  �      (7 )

where j jb ∞
=⋅ ⋅ 1( , )  is a sequence of the basis functions,

( )n

n

J
Jb x z b x z b x z b x z ′≡ …1 2( , ) ( , ), ( , ), , ( , )  and 

n n nJ J J
n nB b X Z b X Z b X Z … 

′≡ 1 1 2 2( , ), ( , ), , ( , ) .

We also introduce a class of functions to define the parameter 
space. Let f → : , where xd⊆   for some integer dx ≥ 1. 
Let ω = (ω1,..., ωdx) be a dx-tuple of nonnegative integers and 
define the differential operator as 

dx
xd

f f x
x x x

ω
ω

ωωω
∂∇ ≡

∂ ∂ ∂21
1 2

( ),  

where ( )xdx x x x= … ∈1 2, , ,  and xd
ii

ω ω
=

≡ ∑ 1 . We also let [p] 
be the integer part of p +∈   and then a function f → :  is 
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called p-smooth if it is [p] times continuously differentiable on χ and 
for all ω such that |ω|= [p] and for some  ν ∈ (0, 1] and constant c > 
0, v

Ef x f y c x yω ω∇ − ∇ ≤ ⋅ −( ) ( )  for all x y ∈ , , where 
E⋅  

is the Euclidean norm. Let p [ ] ( )  denote the space of all [p] times 
continuously differentiable real-valued functions on χ. A Hölder ball 
with smoothness p is defined below. 

v
E

p

xp
p

x y x yp

f x f y

x y

f f x C

C
ω ω

ω

ω

ω

∈≤

∈ ≠=

 
 
 
 ∇ − ∇
 
 − 

∈ ∇ ≤

Λ =
≤







 



[ ]

[ ]

, ,[ ]

( ) ( )

( ) : sup sup ( ) ,

( )
sup sup

In the equation above, C is a positive finite constant.
For a generic function defined on the support of a random variable 

X with its distribution function Fx, χ, let 
x

f ess f x
∞

∈
≡


sup ( )  and 

Xf f x dF x≡ ∫
2 2
2

( ) ( )  denote the supremum-norm (or sup-norm) and L2-norm, 
respectively, while ess sup denotes the essential supremum. For any α α ∈  �, ,  
d e f i n e  g g r r h hα α

∞ ∞ ∞ ∞
− ≡ ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ 

,
( , ) ( , ) ( ) ( ) ( ) ( )

and 
g g r r h hα α− ≡ ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ 



22 22

, 2 2 2 2
( , ) ( , ) ( ) ( ) ( ) ( ) . For a 

(random) vector A, 
EA  is the Euclidean norm of A.

III. Asymptotic Theory

A. Consistency and Convergence Rate

We impose the conditions below to establish the consistency of the 
PSMD estimator.

Assumption 3.1 
(i) The data {Wi : i  = 1, 2,..., n } are i.i.d; (ii) The conditional distribution 

of Y on X and Z admits its conditional density function ƒY | X, Z such that 
ƒY | X, Z (g0(X, Z1;τ) + r0 (X − h0 (Z) ; τ ) | X, Z) > 0 almost certainly, ƒY | X, Z (y|x, 
z) is continuous in (y, x ′, z ′) ′ and Y X Z

y
f y x z Supp X Z< ∞ ∈| ,sup ( | , ) ( , );  

(iii) Supp(X, Z) is a compact subset of x zd d+


 with Lipschitz continuous 
boundary; and (iv) the density function of (X, Z), ƒ X Z(x, z), is bounded 
and bounded away from zero over Supp(X, Z).
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Assumption 3.2. (i) g r

g r

p p
c cg Supp X Z r Supp X h Z∈ ≡ Λ ∈ ≡ Λ − 0 1 0 0( ( , )), ( ( ( ))),  

and ( )h

h

p
ch Supp Z∈ ≡ Λ0 ( )  with pg > dx + dz1, pr > dx, and ph > dz; and (ii) 

all first-order partial derivatives of g0, r0, and  h0 are uniformly bounded.

Assumption 3.3. (i) For a sequence of basis functions, ( )j j
p

∞

=
⋅

1
( ) , the 

sieve spaces for  ,  , and   are given by

g n

r n

h n

k
n n g n n g

k
n n r n n r

k
n n nh n h

v v

z z

g x z p x z g c

r p r c

h p h c

β

β

β

∞

∞

∞

′≡ = ≤

′≡ = ≤

′≡ = ≤







,

,

,

,1 1

,

,

{ ( , ) ( , ) : }

{ ( ) ( ) : }

{ ( ) ( ) : }

where kg,n, kr,n, and kh,n are some positive nondecreasing integer 
sequences such that kg,n, kr,n, kh,n → ∞, max (kg,n, kr,n, kh,n) = o(n); (ii) let 

g n g nk k
g n p X Z p X Z ′≡ ⋅   , ,

, 1 1( , ) ( , ) ,  r n r nk k
r n p V p V 

 
′≡  , ,

, ( ) ( ) ,  and 

h n h nk k
h n p Z p Z 

  
′≡  , ,

, ( ) ( ) , then the eigenvalues of g n r n , ,, , and 

h n ,  are bounded above and away from zero uniformly over all n; 
and ( i i i )  there  ex is t  { π ng 0} n,  { π nr 0} n,  and  { π nh 0} n such that 

( )g

g nng g O k σπ −

∞
− =

,0 0 , ( )r
r nnr r O k σπ −

∞
− =

,0 0 , and  ( )h
h nnh h O k σπ −

∞
− =

,0 0  
for some σg, σr, σh > 0.

Assumption 3.4. (i) nX Z X Z τ τ= = −Σ Σ


( , ) ( , ) (1 )  almost surely for all 
n; (ii)  λn> 0 for all n, λn = o(n−1), and n nOα π α λ

∞
− =

0 0 ,
( ) ; (iii) 

nP P gα α= = ∇ 2

2
ˆ( ) ( )  .

Assumption 3.5. 
( ) m

m

p
X Y Z cF g r h X Z Supp X Zτ τ⋅ ⋅ + ⋅ − ⋅ = ⋅ = ⋅ ∈ Λ| , 0 0 0( , ; ) ( ( ; ) | , ) ( ( , ))   

with pm > 1/2.

Assumption 3.6. The following conditions hold:
(i) ( )j j

b
∞

=
⋅

1
( )  is a sequence of polynomial spline function;

(ii) 
n

jJj E
b X Z C

≤
< < ∞

 
 


2

  
( , )max  for some constant C;

(iii) the smallest eigenvalue n nJ Jb X Z b X Z ′  ( , ) ( , )  is bounded away 
from zero for all Jn; and

(iv) Jn → ∞ as n → ∞, and Jn log(Jn) = o(n).
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Assumption 3.1 is standard in the literature on QR and sieve 
estimation, Assumption 3.2 defines the parameter space for each 
structural parameter, and Assumption 3.3 defines the sieve spaces 
for  . Condition (iii) of Assumption 3.3 requires that the sieve 
spaces approximate the structural functions well in terms of the 
approximation error shrinking at a certain rate. Under Assumptions 
3.1 and 3.2, various sieve spaces can satisfy this condition. Specifically, 
for p

cf ∈ Λ ( ) , with χ being a compact subset of d
 , we have 

p

d
n nf f O kπ

−

∞
− =

 
 
 

 by choosing polynomial or spline sieve spaces (cf. 

Newey, 1997). Assumption 3.4 defines the weighting matrix and the 
penalty function. Note that the weighting matrix in the assumption is 
the variance of the moment condition in (5). We consider the L2-norm of 
the derivative of g as the penalty function, which is widely used in the 
literature. Assumption 3.5 implies that the conditional moment function 
m(X, Z ; α0) belongs to a Hölder ball, and Assumption 3.6 specifies the 
sieve space on which m(∙,∙) is approximated.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1–3.6 hold. Then,

n poα α
∞

− =
0 ,

ˆ (1).

Given the consistency result in Theorem 3.1, we can restrict our 
attention to a 

∞
⋅

, - shrinking neighborhood of α0 to establish the 
convergence rate of ˆnα . For given small ε > 0 and large M > 0, we define

o s

o s n o s n

Mαα α α ε
∞∞

≡ ∈ − ≤ ≤

≡ 




  

 0 ,,

.

{ : , },

We also define

t

dm X Z d W t t X Z
d dt

α ρ α αα α
α =

− +− ≡ 0 0
0

0

( , ; ) [ ( ; (1 ) )| , ][ ]

as the pathwise derivative of m in the direction [α − α0] evaluated at α0. 
Let ⋅  denote a pseudo metric on os , where we have
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( )dm X Z dm X ZX Z
d d

α α

α αα α α α
α α

′ −

− ≡

    
 − −   
     

∑

1 2

10 0
1 2 1 2

( , ; ) ( , ; )[ ] ( , ) [ ] .

for any osα α ∈1 2, .

Assumption 3.7. 
(i) os  and 

osn  are convex; and (ii) 
E

m X Z α αα  −  
  2

0
2( , ; )  

for all osnα ∈ .

Assumption 3.8.
 m

x z

m

x z

p
d dn

n

p
d dn

n n n
J J
n

J J o n
n

α π α λ
−

+
−

+ −
∞

      =   
     

−


22
1

0 0 ,
max , ,max , , , , ( )  

where { }g hr
g n r n h nn k k kσ σσα π α − −−

∞
− =

 , , ,0 0 ,
max ., ,  

Assumption 3.7 is mild, as we restrict the attention to 
osnα ∈  (cf. Van 

de Geer, 2000). Assumption 3.8 further restricts the rate at which λn 
approaches zero. The following theorem establishes the L2-convergence 
rate of the PSMD estimator ân. 

Theorem 3.2. Suppose that Assumptions 2.1 and 3.1–3.8 hold. Then, 
for { }g hr

g n r n h nn k k kσ σσα π α − −−
∞

− =
 , , ,0 0 ,

max , , , we have

m

x z

p
d dn

n p n n
JO J
n

α α α π α
−

+
∞

    − = −     
 0 0 0, 2 ,

ˆ max , , .

If ( )g n r n h nn nJ k k k k=
, , ,

max , , , then

m

x z

p
d dn

n p n n
kO k
n

α α α π α
−

+
∞

         
− = −

 0 0 0, 2 ,
ˆ max , ,

The convergence rates presented in Theorem 3.2 are standard 
nonparametric convergence rates (cf. Stone, 1982), thus implying that 
the sieve estimator does not suffer from an ill-posed inverse problem. 
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Although the structural function g0 depends on the endogenous 
regressor X, we can effectively circumvent the ill-posed inverse problem 
by virtue of the triangular system of equations.

B. Sieve Wald and QLR Inference

We now consider inference on functionals of the parameter α. Here, 
we use the novel approach developed by Chen and Pouzo (2015), who 
considered sieve Wald and QLR test statistics for inference on the 
functionals. One important advantage of their approach is that the 
verification of whether the functional of interest is regular or irregular is 
not required. We denote the L2-convergence rate of the PSMD estimator 
provided in Theorem 3.2 by δ*

2,n; that is,

m

x zg hr

p
d dn

ng n r nn h n
J
n

k k k Jσ σσδ
−

+− −−
  =  
  

*
, ,2, ,max , , , .,

We let δ2,n ≡ log(log(n + 1))·δ*
2,n and assume that δ2,n = o(1).

Define

nos

osn os n

α α α δ≡ ∈ − ≤
≡ 



  

 2,0{ : },

Let f → :  be a functional defined over the parameter space. For 
any v ∈ , define

t

d f f tvv
d t
α α
α =

∂ +
≡

∂
0 0

0

( ) ( )[ ]

as a pathwise derivative of the functional ƒ at α0 in the direction of ν. 
We assume that d f

d
α
α

⋅ → 0( ) [ ] :  is a bounded linear functional with 
respect to ⋅

, 2
.

Many functionals of interest pertain to empirical analysis. For example, 
one can consider the (weighted) average of the derivative of g0 (i.e., 

x X Zf g x z d F x zα = ∇∫ 10 1 , 1( ) ( , ) ( , ) ). In addition, should one be 
interested in the function value at some point, the functional can be 
defined as f g x zα =0 0 1( ) ( , )  for some x z Supp X Z′ ′ ′ ∈1 1( , ) ( , ).2

2 Although we focus on nonparametric models, when the model contains a 
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Let   be a linear span of os α− 0{ }  endowed with both ⋅ 2 and  

⋅  norms. Note that under Assumption 3.1(ii), there exists a finite 
constant C > 0 such that Cv v≤ ⋅

2
 for any v ∈� . Let   be the 

closure of   with respect to ⋅ . For any v v ∈�1 2, ,  define an inner 
product induced by the metric ⋅  as follows:

dm X Z dm X Zv v v X Z v
d d

α α
α α

′
−

    
 < > ≡    
     

∑ 10 0
1 2 1 2

( , ; ) ( , ; ), [ ] ( , ) [ ] ,
	

� (8)

where

( )n Y X Z

g n r n h n

dm X Z u f g X Z r X h Z X Z
d

u u r u

α
α

 
 

= + −

⋅ + + ∇ ⋅

*0
0 1 0 0| ,

* * *
, , 0 , .

( , ; ) [ ] ( , ) ( ( ))| ,
� (9)

The inner product is well-defined under Assumption 3.1, and ( )n ⋅ ,  
is a Hilbert space. Let 0, nnα ∈  be the projection of α0 onto n  under 
⋅ ; that is,

n
n α

α α α α
∈

− = −
0, 0 0arg min

Furthermore, let 
n  be the closed linear span of osn α− 0{ }  under  

⋅ . Then, ( )n ⋅ ,  is a finite dimensional Hilbert space. Given that 
every linear functional on a finite dimensional Hilbert space is bounded, 
the Riesz representation theorem implies that n nv ∈ *  exists such that, 
for any nv∈ , we have

	
n

d f v v v
d
α
α

= < >*0( ) [ ] , � (10)

and
(11)

n
n

v v

d f v
d

v
v

α
α

∈ ≠
≡ < ∞



0

*

: 0

( ) [ ]
sup

finite-dimensional parameter 0
dθθ ∈  , we can set f (α0) = λ′ θ0 for some known 

dθλ ∈   to perform statistical inference on θ0.
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where ν*
n is called the sieve Riesz representer of the functional 

d f
d
α
α

⋅0( ) [ ]  
on n . For each n, define the sieve score associated with the i -th 
observation as 

i i
n i n i i i

dm X ZS v X Z W
d

α ρ α
α

′
− 

≡  
 

∑* * 10
, 0

( , ; ) [ ] ( , ) ( ; )

and let

n n isd
v Var S≡* *

,( )

to denote the sieve variance. We also defined the scaled sieve Riesz 
representer as

n
n

n sd

vu
v

≡
*

*
*

.

We impose the following condition on the functional of interest.

Assumption 3.9. Let 
n n nt t M δ≡ ∈ ≤ 2,{ : 4 } . Then, the following 

conditions hold: 
(i) df

da
αν ν

0( ) [ ]  is a nonzero linear functional mapping from   to 

 , { }n n

∞

=


1
 is an increasing sequence of finite dimensional Hilbert 

space that is dense in ( )⋅, , and nv
o

n
=

*

;(1)

(ii) 

o s n n

n n

t n

d fn f tu f tu
d

o
vα

αα α α α
α

∈ ×

+ − − + −
=

 

* *0
0 0

*( , )
;

( )( ) ( ) [ ]
sup (1)

(iii)
n

n

d fn
d

o
v

α α α
α

−
=

0
0, 0

*

( ) [ ]
(1).

Condition (i) of Assumption 3.9 essentially places a restriction on the 
rate at which the sieve space grows as n goes to the infinity. Meanwhile, 
Condition (ii) of Assumption 3.9 restricts the bias caused by the 
nonlinearity of ƒ(·). This condition requires that ƒ(α) − ƒ(α0) for α in a 
neighborhood of α0 be well-approximated by the pathwise derivative of ƒ.  
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This condition is satisfied if ƒ(·) is a linear functional, such as weighted 
average derivative and the structural function value at a given point. 
Condition (iii) of Assumption 3.9 is required to eliminate the asymptotic 
bias caused by the finite-dimensional sieve approximation of α0, α0,n.

Assumption  3.10.  ( i )  ( )A

A

p
n c

dm X Z u Supp X Z
d

α
α

∈ Λ*0( , ; ) [ ] ( , )  wi th 

x z
A

d dp +
>

( )
2

 and cA > 0; (ii) let Y X Z
Y X Z

f y x z
f y x z

y
∂

′ ≡
∂

| ,
| ,

( | , )
( | , )

denote the derivative of the conditional density function of Y given X = 
x and Z = z. The function Y X Zf x z′ ⋅| , ( | , )  is continuous and uniformly 
bounded for almost all x z Supp X Z′ ′ ′ ∈( , ) ( , )  .

Assumption 3.11. The following conditions hold:

(i) 
m

g h x zr

p
d dn n

n g n r n h n n
J Jk k k J
n n

σ σσδ
−

− − +−
  = = 
  

*
2, , , ,max , , , ,  ;

(ii) ( )( ) n g n r n h nn J k k k o n+ ⋅ =
8 5 4

, , ,log log (1 ) max { , , } ( ) ;

(iii) 
a

x z

p
d d

n nJ o nδ
−

+ −=
2

( ) 2 1
2, ( ) .

Assumption 3.12. There exists δ0 > 0 such that n i

n sd

s
v

δ+ 
  < ∞ 
  


02

*
,

* .

Assumption 3.10 imposes a smoothness condition on the derivative 
of m and the conditional density function of Y given X and Z. 
Assumption 3.11 restricts the rates at which kg,n, kr,n, kh,n, and Jn grow. 
This assumption is required to control for the bias term of the sieve 
estimator. Assumption 3.12 is a sufficient condition for the Linderberg’s 
condition that allows to employ the central limit theorem for the score 
function. The following theorem establishes the asymptotic normality of 
the sieve plug-in estimator of the functional.

Theorem 3.3. Suppose that Assumptions 2.1 and 3.1-3.12 hold. Then,

( )n d

n sd

n f f
N

v
α α−

→0
*

ˆ( ) ( )
(0, 1).

Since the generalized residual function ρ(W ; α) in our case is non-
smooth in α, estimating the sieve Riesz representer may be cumbersome, 
as pointed out by Chen and Pouzo (2015) . For this reason, we propose 
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the sieve QLR statistic for inference on the functional of interest. To this 
end, we define the restricted sieve space under H0 : ƒ(α0) = ƒ0 for some 
known f ∈ 0  as

R
n nf f fα α≡ ∈ = 0 0( ) { : ( ) }

Let ân
R  denote the restricted approximate PSMD estimator, defined as

� �R
n

R R
n n n n n n n n p

f
Q P Q P o n

�
� � � � � � �

�
� � � �

A 0

1

( )
ˆ̂ ˆ ˆˆ̂( ) ( ) inf ( ) ( ) ( )ˆ ˆ

where n
n n i i n i i n i ii

Q m X Z X Z m X Z
n

� � �
�

� � �� �� ��
11ˆ ˆˆ̂( ) ( , ; ) ( , ) ( , ; ).ˆ  

Then, the sieve QLR statistic is defined as

· � �R
n n n nnQLR f n Q Q� �� �0 .ˆ̂ ˆˆ̂( ) ( ) ( )ˆ

The following theorem establishes the asymptotic distribution of 


nQLR f 0( ): 

Theorem 3.4. Suppose that Assumptions 2.1 and 3.1-3.12. Then, under 
H0 : ƒ(α0) = ƒ0, we have



d
nQLR f χ→ 2

0( ) (1).

Theorem 3.4 provides a way to construct confidence sets for the 
functional ƒ(α0). Let cp denote the p × 100% quantile of χ 2(1)  for given 
p ∈ (0, 1) and define 

R
n

n nf
Q f Q

α
α

∈
≡

 0

*
0 ( )

ˆ ( ) ( )ˆinf . Then, a (1 − p) × 100% 
confidence region for f (a0) can be constructed as

	 

np pCS c QLR c c− −= ∈ ≤1 1{ : ( ) } � (12)

Notably, Theorems 3.3 and 3.4 are applicable, regardless of 
whether or not f (a0) is n -estimable. Based on Theorem 3.3, we 
can see in a straightforward manner that the asymptotic variance 
of ( )nn f fα α− 0ˆ( ) ( )  is given by nv * . Here, nv * is allowed to 
diverge to the infinity, which is the case that f (a0) is not n -estimable (cf. 
Lemma 3.3 in Chen and Pouzo (2015)).
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IV. Monte Carlo Simulation 

Next, we conduct a Monte Carlo simulation study to investigate the 
finite-sample performance of the PSMD estimator. Previously, Lee (2022) 
has shown that the PSMD estimator without the penalty performs well 
in the finite sample. Here, we consider the case in which a nontrivial 
penalty function is incorporated. The data generating process (DGP) is 
as follows:

	
		

                                                                                    ,
( ) ( )( )

( )
g g g gB B

B h h

Y F X a b F a b U

X F Z a b V

τ τ τ τ= − +

= + +

2 2 ; ( ), ( ) 0.5 ; ( ), ( )

2 0.5 ; ,

where U = Φ( ε1 ) − 0.5 and V = Φ(ε2)−0.5 with
 

BVNε ε
    ′     
    

1 2

0 1 0.3
( , ) ~ , .

0 0.3 1   

BVN stands for the bivariate normal distribution, Φ(·) is the standard 
normal distribution function, and FB(·; a, b) is the beta distribution 
function with parameters a and b.

For the quantile level of interest, we consider 0.25, 0.5, and 0.75 
quantile levels (i.e., τ ∈ {0.25. 0.5, 0.75}) and allow for αg(τ) and bg(τ) to 
vary across the quantile level τ by setting ag(τ) = 4 + Φ−1(τ) and bg(τ) = 4 − 
Φ−1(τ). For the reduced-form equation, we set ah = bh = 2. Note that the 
normalization value x  in Assumption 2.1 is 1 in this simulation. The 
sample size n is set to be 500.

The sieve spaces for   and   are chosen to be polynomial sieves, 
and Hermite polynomial sieve is used for   with k n∝ 1/7 , where kn = 
max (kg,n, kr,n, kh,n). We use a series estimator of mτ (· , · ; α) by using the 
tensor product of two polynomial spline sieve spaces as mτ is a function 
of X and Z. In our simulation, we set kn = 5 by selecting a proper 
constant C0 such that kn = C0n

1/7= 5 and Jn = 17.
We consider the IBIAS2 and IVAR of the PSMD estimator of g0(∙ ; τ) 

as finite-sample performance measures of the PSMD estimator. Both 
IBIAS2 and IVAR are computed via numerical integration over the [0.2, 
1.8] with a grid size of 0.01. The integrated mean squared error (MSE) 
is defined as the sum of IBIAS 2 and IVAR. We employ the (empirical) 
L2 norm of g∇  over the [0.2, 1.8] for the penalty function, and tuning 
parameter for penalization, λn, varies from 0 to 0.0001.3 All results are 

3 The support of X is [0, 2], and the integration region is an interior of the 
support.
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obtained from 1,000 simulation iterations.
Table 1 shows the simulation results for each τ ∈ {0.25. 0.5, 0.75} with  

λn = 1×10−5. Regardless of which quantile levels are used, we can see that 
the PSMD estimator performs well in finite samples in terms of both 
IBIAS2 and IVAR. Figure 1 shows the corresponding estimated curves 
and Monte Carlo confidence bands. In the figure, the true function is 
depicted as a solid line; the corresponding estimator is represented by a 
dotted line, which constitutes the pointwise average derived from 1000 
Monte Carlo simulations; and the Monte Carlo 99% confidence bands 
are illustrated with dashed lines.

We report the simulation results for ĝn  ( · ) with various values of λn 
in Table 2 to investigate the sensitivity of the PSMD estimator to λn. 
Following Chen and Pouzo (2012), we consider the “sieve dominating 
case,” in which the role of penalty is relatively small (i.e., λn ↓ 0 fast 
enough).4 The results in Table 2 indicate that the PSMD estimators are 

4 Chen and Pouzo (2012) also considered the class of PSMD estimators using 

Table 1 
Simulation Results (n = 500, λn = 1×10−5)

ĝn  (· ; 0.25) ĝn  (· ; 0.5) ĝn  (· ; 0.75)

IBIAS 2 0.0037 0.0026 0.0016

IVAR 0.0033 0.0033 0.0034

IMSE 0.0070 0.0059 0.0051

Note: The solid lines are the true structural function g0, and the dash-dotted 
lines are the (pointwise average of) sieve estimator ĝn. We report 99% Monte Carlo 
confidence bands which are dashed lines in each figure.

Figure 1 
Simulation Results (n = 500, λn = 1×10−5)
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not sensitive to the choice of λn. In addition, the IMSE tends to decrease 
as the degree of penalization decreases (i.e., λn ↓ 0).

At this point, the performance of the test statistics should be 
considered. However, as Chen and Pouzo (2015) already investigated 
the finite sample performance of the test statistics in their simulation 
study, we no longer conducted a simulation study in this paper.

V. Conclusion 

In this paper, we consider the nonparametric estimation and 
inference for QR with endogenous regressors. The identification of the 
model parameter is achieved using a control function approach. Based 
on the identification result, we propose to use the PSMD estimation 
procedure, which is practical, useful, and easy to implement . We 
also develop the asymptotic theory for the PSMD estimator, including 
consistency, convergence rates, asymptotic normality, and the 
distributional theory for the sieve QLR test statistics. The results of 
the Monte Carlo simulation study confirm that the PSMD estimator 
performs well in finite samples.

(Submitted Jan 15, 2025; Accepted Jan 15, 2025)

large lower semicompact penalty. The role of penalization in our context is not 
substantial given that the nonparametric objects in the estimating equation do 
not depend on the endogenous regressors once we include the control function. 
Consequently, we use a small penalty in the simulation study.

Table 2 
Sensitivity to λn(n = 500, τ = 0.5)

λn 1×10−4 7×10−5 5×10−5 3×10−5 1×10−5 0

IBIAS 2 0.0185 0.0162 0.0075 0.0018 0.0026 0.0027

IVAR 0.0028 0.0035 0.0066 0.0047 0.0033 0.0035

IMSE 0.0213 0.0197 0.0141 0.0065 0.0059 0.0062
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Appendix

A. Mathematical Proofs

In this section, we provide mathematical proofs of the main results. 
We introduce notation that will be used in the proofs. Let ⋅


( , )  

be a metric space of real valued function f → : . The covering 
number N ε ⋅


( , , )  is the minimum number of ε⋅

  balls 
that cover  . The entropy is the logarithm of the covering number. 
An ε-bracket in ⋅


( , )  is a pair of functions l u ∈ ,  such 

that l u < ∞


,  and u l ε− ≤


. The covering number with 
bracketing N ε ⋅


[] ( , , )  is the minimum number of ε⋅



-brackets that cover  . The entropy with bracketing is the logarithm 
of the covering number with bracketing. The bracketing integral is 
defined as dN

δ
εε ⋅∫ 

[]0
( , , ) . Let C denote a generic positive 

and finite constant. It can be different across where it appears. Some 
empirical processes may not be measurable, and thus the expectation 
operator cannot be applied to those processes. In such a case, one can 
replace the expectation operator with the outer expectation operator. 
We use the notation ⋅ [ ]  mainly to indicate the expectation operator, 
but it may also stand for the outer expectation if its argument is not 
measurable.

a) Proof of Theorem 3.1
Proof. The proof of Theorem 3.1 is analogous to those of Theorem 2 

in Lee (2022) and Theorem 4.1 in Lee (2023). To be concrete, we verify 
the sufficient conditions of Lemma 3.1 in Chen and Pouzo (2015). 
Assumption 3.1(i) in Chen and Pouzo (2015) is implied by Assumption 
2.1. Assumption 3.1(ii) in Chen and Pouzo (2015) is satisfied by 
Assumptions 3.2 and 3.3. Let 

( )( )Y X ZQ F g X Z r X h Z X Zα τ
τ τ

 ≡ + − −  −


2

| , 1
1( ) ( , ) ( ( )) | ,

(1 )
. 

Since FY|X,Z ( ∙ | X, Z) is continuous almost surely, the function Q(α) is 
continuous in α, where. Therefore, Assumption 3.1(iii) in Chen and 
Pouzo (2015) is met. Under Assumption 3.4, ∑ (X, Z) = τ(1 − τ) > 0 , which 
implies Assumption 3.1(iv) in Chen and Pouzo (2015).

Note that
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( )( )
n

n

n n nY X Z

Q

F g X Z r X h Z X Z

α π α

π α

π π π τ
τ τ

∞

 
  

−

≡

+ − −
−







0

0 0 0

0 0 ,

2
1| ,

( )
1 ( , ) ( ( ))| ,

(1 )

Since τ = FY | X, Z (g0(X, Z1) + r0(X − h0(Z))|X, Z), Y X Z
y x z

f y x z
′ ′

< ∞| ,
( , , )
sup ( | , )  

and r
∞

∇ < ∞0  under Assumptions 3.1 and 3.2. Together with 
Assumption 3.4, we have Assumption 3.2(i) in Chen and Pouzo (2015) 
satisfied. Since 

nP P⋅ = ⋅ˆ( ) ( ) , Assumption 3.2 (ii) is satisfied. By the 
same argument of the proof of Lemma B. 1 in Lee (2023), it follows that 
Assumption 3.2(iii) in Chen and Pouzo (2015) is satisfied.

We verify the conditions of Lemma C. 2 in Chen and Pouzo (2012) 
for Assumption 3.3 in Chen and Pouzo (2015). We adapt the proof of 
Lemma 2 in Lee (2022). Specifically, we can show that

n

W
α

ρ α
∈

≤


2sup ( , )

and that

( )
n

j E
b X Z W W K

α α α δ
ρ α ρ α δ

∞
∈ − ≤

 
 
  

− ≤
 


 ,

2 2 2

:
( , ) sup ( ; ) ( ; )

under the assumptions in Theorem 3.1 by using the same argument for 
the proof of Lemma 2 in Lee (2022). In addition, we have

x z zx
g hr

d d dd
p pp

N w dw

w w w dw

κ
∞

+
− −−

+ ⋅

+ + < ∞

∫

∫




1

1/
,

( )

1

0

1

0

1 log ( , , )

( )

with κ = 1 under Assumption 3.2 by the same argument for the proof of 
Lemma 2 in Lee (2022). Therefore, we have Assumption 3.3 in Chen and 
Pouzo (2015) in our case with
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In all, the conditions of Lemma 3.1 in Chen and Pouzo (2015) are 
satisfied, and this completes the proof.

b) Proof of Theorem 3.2
Proof. The proof of Theorem 3.2 is almost identical to that of Theorem 

3 in Lee (2022), except for that we use a non-trivial penalty function. 
Therefore, it is enough to verify Assumption 3.4(iii) and (iv) in Chen and 
Pouzo (2015). They are implied by Assumptions 3.4 and 3.8, and this 
completes the proof.

c) Proof of Theorem 3.3
Lemma A.1. Suppose that Assumptions in Theorem 3.3 hold. Then, 

Assumptions A. 4 and A. 5 in Chen and Pouzo (2015) are satisfied.
Proof. The proof for Assumption A. 4 is identical to the proof of 

Lemma A. 2 in Lee (2022). Assumptions 3.1 and 3.6 imply conditions 
(i), (ii), and (iv) of Assumption A. 4 in Chen and Pouzo (2015). Condition 
(iii) of Assumption A. 4 in Chen and Pouzo (2015) can be implied by 
the condition on Jn in Assumption 3.6 with polynomial spline sieve, as 
demonstrated in Assumption C. 1 in Chen and Pouzo (2012). Therefore, 
Assumption A. 4 in Chen and Pouzo (2015) is satisfied.

It is straightforward to see that 
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for some constant K > 0 under Assumptions 3.2 and 3.3. Therefore, 
conditions (i) and (ii) of Assumption A. 5 in Chen and Pouzo (2015) are 
satisfied with n Wρ ≡( ) 2  and κ = 1/2 .
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by Theorem 9.23 in Kosorok (2008). Therefore, it is enough to bound 
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under Assumption 3.3, and we have
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under Assumption 3.11. As a result, condition (iii) of Assumption A. 5 in 
Chen and Pouzo (2015) is implied. Condition (iv) of Assumption A. 5 in 
Chen and Pouzo (2015) is implied by Assumptions 3.4 and 3.11. In all, 
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Assumptions A. 4 and A. 5 in Chen and Pouzo (2015) are satisfied.
Let m X Z α ( , ; )  be the least square projection of m(X, Z ; α) onto  

bJn (X, Z ). Let n n
dm X u
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Lemma A.2. Suppose that Assumptions in Theorem 3.3 hold. Then, 
Assumption A. 6 in Chen and Pouzo (2015) is satisfied.
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and this implies that conditions (i) and (ii) of Assumption A. 6 in Chen 
and Pouzo (2015) are satisfied.
Lemma A.3. Suppose that Assumptions in Theorem 3.3. Then, 
Assumption A. 7 in Chen and Pouzo (2015) is satisfied.

Proof. Since FY | X, Z (y|x, z) is twice continuously differentiable with 
respect to y for almost all (x ′, z ′) ∈ Supp(X, Z) by Assumption 3.10, 
condition (i) of Assumption A. 7 in Chen and Pouzo (2015) is met. For 
any osnα ∈  , it follows that
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Since f′Y | X, Z (∙|X, Z) is uniformly bounded by Assumption 3.10, we obtain 
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that

o s n
n n

g n r nn nh n

dm X Zdm X Z u u
d d

u u r u O

α

αα
α α

δ δ

∈

 
 
  

 
 

−

+ + ∇ ⋅ =



 



* *0

* * * 2
, ,2, 0 2,,

( , ; )( , ; )sup [ ] [ ]

{ } ( ).

Therefore, Assumption 3.11 implies that

osn

n n n
dm X Z dm X Zu u o n

d dα

α α δ
α α

−

∈

 
− ⋅ = 

 




* * 2 10
2,

( , ; ) ( , ; )sup [ ] [ ] ( ),

which implies condition (ii) of Assumption A. 7 in Chen and Pouzo (2015). 
In addition, Assumption 3.10 implies that
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to that condition (iii) of Assumption A. 7 in Chen and Pouzo (2015) is 
satisfied. Lastly, for any 
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where the second line holds by Assumption 3.10 and the Cauchy-
Schwarz inequality. Therefore, it follows that
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and n o nδ −=2 1/2
2, ( )  by Assumption 3.11, implying that condition (iv) of 

Assumption A. 7 in Chen and Pouzo (2015) is satisfied. This completes 
the proof.

Proof of the theorem
Proof. Assumptions 3.1-3.4 in Chen and Pouzo (2015) are implied by 

Assumptions 2.1-3.7, as shown in Lee (2022). Assumption 3.5 in Chen 
and Pouzo (2015) is directly imposed by Assumption 3.9. Lemmas A.1, 
A.2, and A. 3 imply that under the set of assumptions of Theorem 3.3, 
Assumptions A4-A7 in Chen and Pouzo (2015) are met. Applying part 
(1) of Lemma 5.1 in Chen and Pouzo (2015) yields that Assumption 3.6(i) 
in Chen and Pouzo (2015) is satisfied. Under Assumption 3.12, it can be 
easily shown that for any ε > 0,
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which is the Lindeberg condition for Lindeberg’s central limit theorem. 
As a result, Assumption 3.6(ii) in Chen and Pouzo (2015) is satisfied. 
Therefore, all conditions in Theorem 4.1 in Chen and Pouzo (2015) are 
satisfied, and this completes the proof.

d) Proof of Theorem 3.4
Proof. Note that under Assumption 3.4, the PSMD estimator defined 

in (6) is the optimally weighted one. Therefore, the result is implied by 
Theorem 4.3 in Chen and Pouzo (2015) and the proof of Theorem 3.3.


	Nonparametric Inference for a Triangular System of Equations for Quantile Regression

