
[ Article ]
Seoul Journal of Economics - Vol. 38, No. 1, pp.51-68
ISSN: 1225-0279
(Print)
Print publication date 28 Feb 2025
Received 15 Jan 2025
Accepted 15 Jan 2025
Recent Applications of Generalized Instrumental Variable Models
Dongwoo Kim
JEL Classification: C10, C26, C50
Abstract
This study comprehensively reviews recent developments in the application of the generalized instrument variable (GIV) framework introduced by Chesher and Rosen (2017, Econometrica). The GIV framework effectively derives sharp bounds (equivalent to identified sets) in incomplete models. Focusing on limited dependent variable models with endogeneity, this study demonstrates the application of general identification results to obtain the identified set in specific settings. Moreover, practical implementation challenges that may arise are discussed, and potential strategies for overcoming them are highlighted in empirical research.
Keywords:
GIV model, Partial identification, Moment inequalities, Identified set, Sharp bounds, Subvector inferenceReferences
-
Andrews, D. W. K., Kim, W., and Shi, X., “Commands for testing conditional moment inequalities and equalities.” The Stata Journal 17(No. 1 2017): 56-72.
[https://doi.org/10.1177/1536867X1701700104]
-
Andrews, D. W. K, and Shi, X., “Inference based on conditional moment inequalities.” Econometrica 81(No. 2 2013): 609-666.
[https://doi.org/10.3982/ECTA9370]
-
Artstein, Z., “Distributions of random sets and random selections.” Israel Journal of Mathematics 46(1983): 313-324.
[https://doi.org/10.1007/BF02762891]
- Belloni, A, Bugni, F., and Chernozhukov, V., Subvector inference in partially identified models with many moment inequalities, arXiv preprint arXiv:1806.11466, 2018.
-
Berry, S. T., and Compiani, G., “An instrumental variable approach to dynamic models.” The Review of Economic Studies 90(No. 4 2023): 1724-1758.
[https://doi.org/10.1093/restud/rdac061]
-
Blundell, R., and Powell, J. L., “Endogeneity in nonparametric and semiparametric regression models.” Econometric society monographs 36(2003): 312-357.
[https://doi.org/10.1017/CBO9780511610257.011]
-
Bugni, F. A., Canay, I. A., and Shi, X., “Inference for subvectors and other functions of partially identified parameters in moment inequality models.” Quantitative Economics 8(No. 1 2017): 1-38.
[https://doi.org/10.3982/QE490]
-
Canay, I. A., Illanes, G., and Velez, A., “A User’s guide for inference in models defined by moment inequalities.” Journal of Econometrics(2023): 105558.
[https://doi.org/10.1016/j.jeconom.2023.105558]
-
Chen, L., and Lee, S., “Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models,” Journal of Econometrics 210(No. 2 2019): 482-497.
[https://doi.org/10.1016/j.jeconom.2018.12.024]
-
Chernozhukov, V., Lee, S., and Rosen, A. M., “Intersection bounds: Estimation and inference.” Econometrica 81(No. 2 2013): 667-737.
[https://doi.org/10.3982/ECTA8718]
-
Chernozhukov, V., Kim, W., Lee, S., and Rosen, A. M., “Implementing intersection bounds in Stata.” The Stata Journal 15(No. 1 2015): 21-44.
[https://doi.org/10.1177/1536867X1501500103]
-
Chesher, A., Single equation endogenous binary response models, CeMMAP working paper No. CWP23/09, 2009.
[https://doi.org/10.1920/re.ifs.2024.0741]
-
Chesher, A., “Instrumental variable models for discrete outcomes." Econometrica 78(No. 2 2010): 575-601.
[https://doi.org/10.3982/ECTA7315]
-
Chesher, A., Kim, D., and Rosen, A. M., “IV Methods for Tobit Models.” Journal of Econometrics 235(No. 2 2023), 1700-1724.
[https://doi.org/10.1016/j.jeconom.2023.01.010]
-
Chesher, A., and Rosen, A. M., “An instrumental variable randomcoefficients model for binary outcomes.” The Econometrics Journal 17(No. 2 2014): S1-S19.
[https://doi.org/10.1111/ectj.12018]
-
Chesher, A., and Rosen, A. M., “Generalized instrumental variable models,” Econometrica 85(No. 3 2017): 959-989.
[https://doi.org/10.3982/ECTA12223]
- Chesher, A., and Rosen, A. M., Econometric modeling of interdependent discrete choice with applications to market structure, CeMMAP working paper No. CWP25/20, 2020.
-
Chesher, A., and Rosen, A. M., “Generalized instrumental variable models, methods, and applications.” in Durlauf, S., Hansen, L. P., Heckman, J., and Matzkin, R. (eds.): Handbook of Econometrics 7A, Elsevier, 2020: 1-110.
[https://doi.org/10.1016/bs.hoe.2019.11.001]
-
Chesher, A., Rosen, A. M., and Smolinski, K., “An instrumental variable model of multiple discrete choice.” Quantitative Economics 4(No. 2 2013): 157-196.
[https://doi.org/10.3982/QE240]
- Chesher, A., Rosen, A. M., and Zhang, Y., Robust analysis of short panels, arXiv preprint arXiv:2401.06611, 2024.
-
Chesher, A., and Smolinski, K., “IV models of ordered choice.” Journal of Econometrics 166(No. 1 2012): 33-48.
[https://doi.org/10.1016/j.jeconom.2011.06.004]
-
Cox, G., and Shi, X., “Simple Adaptive Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequality Models.” The Review of Economic Studies 90(No. 1 2023): 201-228.
[https://doi.org/10.1093/restud/rdac015]
-
Galichon, A., and Henry, M., “Set identification in models with multiple equilibria.” The Review of Economic Studies 78(No. 4 2011): 1264-1298.
[https://doi.org/10.1093/restud/rdr008]
- Gong, W., Cox, G. F., and Shi, X., Stata Commands for Full-vector and Subvector Inference in Moment Inequality Models, Working paper, 2024.
-
Haile, P. A., and Tamer, E., “Inference with an incomplete model of English auctions.” Journal of Political Economy 111(No. 1 2003): 1-51.
[https://doi.org/10.1086/344801]
-
Kaido, H., Molinari, F., and Stoye, J., “Confidence intervals for projections of partially identified parameters.” Econometrica 87(No. 4 2019): 1397-1432.
[https://doi.org/10.3982/ECTA14075]
-
Kim, D., “Partial identification in nonseparable count data instrumental variable models.” The Econometrics Journal 23(No. 2 2020): 232-250.
[https://doi.org/10.1093/ectj/utz025]
-
Kim, D., “Partially identifying competing risks models: An application to the war on cancer.” Journal of Econometrics 234(No. 2 2023): 536-564.
[https://doi.org/10.1016/j.jeconom.2021.07.007]
-
Kline, B., and Tamer, E., “Recent developments in partial identification.” Annual Review of Economics 15(No. 1 2023): 125-150.
[https://doi.org/10.1146/annurev-economics-051520-021124]
- Manski, C. F., “Nonparametric bounds on treatment effects.” The American Economic Review 80(No. 2 1990): 319-323.
-
Manski, C. F., “Identification of treatment response with social interactions.” The Econometrics Journal 16(No. 1 2013): S1-S23.
[https://doi.org/10.1111/j.1368-423X.2012.00368.x]
-
Manski, C. F., and Pepper, J. V., “Monotone Instrumental Variables: With an Application to the Returns to Schooling” Econometrica 68(No. 4 2000): 997-1010.
[https://doi.org/10.1111/1468-0262.00144]
-
Mullahy, J., “Instrumental-variable estimation of count data models: Applications to models of cigarette smoking behavior.” Review of Economics and Statistics 79(No. 4 1997): 586-593.
[https://doi.org/10.1162/003465397557169]
-
Tobin, J., “Estimation of relationships for limited dependent variables." Econometrica 26(No. 1 1958): 24-36.
[https://doi.org/10.2307/1907382]
-
Windmeijer, F. A. G., and Silva, J. M. C. S., “Endogeneity in count data models: an application to demand for health care.” Journal of applied econometrics 12(No. 3 1997): 281-294.
[https://doi.org/10.1002/(SICI)1099-1255(199705)12:3<281::AID-JAE436>3.3.CO;2-T]
- Wooldridge, J. M., Econometric analysis of cross section and panel data, MIT press, 2010.
- Wright, P., The Tarif f on Animal and Vegetable Oils, New York: Macmillan, 1928.