
Nonparametric Inference for a Triangular System of Equations for Quantile Regression
JEL Classification: C13, C14, C31.
Abstract
In this study, we consider nonparametric estimation and inference for quantile regression (QR) with endogenous regressors. We extend the semiparametric triangular model for QR in Lee (2007) to a nonparametric one, and the identification of the structural parameters is achieved via a control function approach. Based on the identification result, we propose the use of the penalized sieve minimum distance procedure of Chen and Pouzo (2015) and develop an asymptotic theory. The inferential theory is valid regardless of whether or not the functional of the structural parameter is -estimable, where n denotes the number of observations. We also establish the asymptotic theory for sieve quasi-likelihood ratio test statistics, enabling us to avoid estimating the asymptotic variance. A Monte Carlo simulation study shows that the proposed estimator performs well in finite samples.
Keywords:
Quantile regression, Endogeneity, Nonparametric simultaneous equations model, Sieve estimation, Sieve quasi-likelihood ratio test statistics.References
-
Ackerberg, D., Chen, X., and Hahn, J., “A practical asymptotic variance estimator for two-step semiparametric estimators.” Review of Economics and Statistics 94(No. 2 2012): 481-498.
[https://doi.org/10.1162/REST_a_00251]
-
Bitler, M. P., Gelbach, J. B., and Hoynes, H. W., “What mean impacts miss: Distributional effects of welfare reform experiments.” American Economic Review 96(No. 4 2006): 988-1012.
[https://doi.org/10.1257/aer.96.4.988]
-
Bitler, M. P., Gelbach, J. B., and Hoynes, H. W., “Distributional impacts of the self-sufficiency project.” Journal of Public Economics 92(No. 3-4 2008): 748-765.
[https://doi.org/10.1016/j.jpubeco.2007.07.001]
-
Chen, X., “Large sample sieve estimation of semi-nonparametric models.” In Heckman, J. J., and Leamer, E. E. (eds.): Handbook of Econometrics 6B, 2007: 5549-5632.
[https://doi.org/10.1016/S1573-4412(07)06076-X]
-
Chen, X. and Pouzo, D., “Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals.” Econometrica 80(No. 1 2012): 277-321.
[https://doi.org/10.3982/ECTA7888]
-
Chen, X. and Pouzo, D., “Sieve Wald and QLR inferences on semi/ nonparametric conditional moment models.” Econometrica 83(No. 3 2015): 1013-1079.
[https://doi.org/10.3982/ECTA10771]
-
Chernozhukov, V., Fernández-Val, I., and Kowalski, A. E., “Quantile regression with censoring and endogeneity.” Journal of Econometrics 186(No. 1 2015): 201-221.
[https://doi.org/10.1016/j.jeconom.2014.06.017]
-
Chernozhukov, V. and Hansen, C., “Quantile models with endogeneity.” Annual Review of Economics 5(No. 1 2013): 57-81.
[https://doi.org/10.1146/annurev-economics-080511-110952]
-
Das, M., Newey, W. K., and Vella, F., “Nonparametric estimation of sample selection models.” The Review of Economic Studies 70(No. 1 2003): 33-58.
[https://doi.org/10.1111/1467-937X.00236]
-
Hahn, J., Liao, Z., and Ridder, G., “Nonparametric two-step sieve M estimation and inference.” Econometric Theory 34(No. 6 2018): 1281-1324.
[https://doi.org/10.1017/S0266466618000014]
-
Hahn, J., and Ridder, G., “Asymptotic variance of semiparametric estimators with generated regressors.” Econometrica 81(No. 1 2013): 315-340.
[https://doi.org/10.3982/ECTA9609]
-
Koenker, R. and Bassett, G., “Regression quantiles.” Econometrica 46(No. 1 1978): 33-50.
[https://doi.org/10.2307/1913643]
-
Kosorok, M. R., Introduction to empirical processes and semiparametric inference, Springer, 2008.
[https://doi.org/10.1007/978-0-387-74978-5]
-
Lee, S., “Endogeneity in quantile regression models: A control function approach.” Journal of Econometrics 141(No. 2 2007): 1131-1158.
[https://doi.org/10.1016/j.jeconom.2007.01.014]
-
Lee, S., “Nonparametric estimation of a triangular system of equations for quantile regression.” Journal of Economic Theory and Econometrics 33(No. 4 2022): 31-53.
[https://doi.org/10.2139/ssrn.4265527]
-
Lee, S., “Efficient estimation of a triangular system of equations for quantile regression.” Economics Letters 226(2023): 111085.
[https://doi.org/10.1016/j.econlet.2023.111085]
-
Mammen, E., Rothe, C., and Schienle, M., “Nonparametric regression with nonparametrically generated covariates.” The Annals of Statistics 40(No. 2 2012): 1132-1170.
[https://doi.org/10.1214/12-AOS995]
-
Newey, W. K., “Convergence rates and asymptotic normality for series estimators.” Journal of Econometrics 79(No. 1 1997): 147-168.
[https://doi.org/10.1016/S0304-4076(97)00011-0]
-
Newey, W. K., “Two-step series estimation of sample selection models.” The Econometrics Journal 12(No. S1 2009): S217-S229.
[https://doi.org/10.1111/j.1368-423X.2008.00263.x]
-
Newey, W. K., Powell, J. L., and Vella, F., “Nonparametric estimation of triangular simultaneous equations models.” Econometrica 67(No. 3 1999): 565-603.
[https://doi.org/10.1111/1468-0262.00037]
-
Stone, C. J., “Optimal global rates of convergence for nonparametric regression.” The Annals of Statistics 10(No. 4 1982): 1040-1053.
[https://doi.org/10.1214/aos/1176345969]
- Van de Geer, S. A., Empirical processes in M-estimation, Cambridge University Press, 2000.