Seoul Journal of Economics
[ Article ]
Seoul Journal of Economics - Vol. 15, No. 4, pp.499-528
ISSN: 1225-0279 (Print)
Print publication date 30 Nov 2002
Received 02 Sep 2002 Revised 20 Oct 2003

Pricing Call Options under Stochastic Volatilities

Chang Mo Ahn ; D. Chinhyung Cho
Professor, College of Business Administration, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul, 143-747, Korea, Tel: +82-2-3408-3166 cmahn@sejong.ac.kr
Professor, College of Business Administration, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul, 143-179, Korea, Tel: +82-2-3408-3171 david@sejong.ac.kr

JEL Classification: G12

Abstract

This paper derives a closed-form solution for the European call option price when the volatility of the underlying stock returns is governed by a diffusion process. The model uses the continuity property of a diffusion process and the martingale approach to valuation of assets under no arbitrage. The pricing formula differs from the Black-Scholes formula in that it needs a volatility adjustment. The volatility movement is allowed to be contemporaneously correlated with the stock price movement.

Keywords:

Continuity, Diffusion, Martingale, No arbitrage, Stochastic volatilities

References

  • Ahn, C., and Thompson, H. “Jump-Diffusion Processes and the Term Structure of Interest Rates.” Journal of Finance 43 (No. 1 1988): 155-74. [https://doi.org/10.1111/j.1540-6261.1988.tb02595.x]
  • Beckers, S. “The Constant Elasticity of Variance Model and Its Implications for Option Pricing.” Journal of Finance 35 (No. 3 1980): 661-73. [https://doi.org/10.1111/j.1540-6261.1980.tb03490.x]
  • Black, F., and Scholes, M. “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81 (No. 3 1973): 637-59. [https://doi.org/10.1086/260062]
  • Blattberg, R., and Gonedes, N. “A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices.” Journal of Business 47 (No. 2 1974): 244-80. [https://doi.org/10.1086/295634]
  • Castanias, R. “Macroinformation and the Variability of Stock Market Prices.” Journal of Finance 34 (No. 2 1979): 439-50. [https://doi.org/10.1111/j.1540-6261.1979.tb02107.x]
  • Chesney, M., and Scott, L. “Pricing European Currency Options: A Comparison of Modified Black-Scholes Model and a Random Variance Model.” Journal of Financial and Quantitative Analysis 24 (No. 3 1989): 367-84. [https://doi.org/10.2307/2330812]
  • Chiras, D., and Manaster, S. “The Information Content of Option Prices and a Test of Market Efficiency.” Journal of Financial Economics 6 (Nos. 2-3 1978): 213-34. [https://doi.org/10.1016/0304-405X(78)90030-2]
  • Clark, P. “A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices.” Econometrica 41 (No. 1 1973): 135-55. [https://doi.org/10.2307/1913889]
  • Cox, J., and Ross, S. “The Valuation of Options for Alternative Stochastic Processes.” Journal of Financial Economics 3 (Nos. 1-2 1976): 145-66. [https://doi.org/10.1016/0304-405X(76)90023-4]
  • Cox, J., Ingersoll, J., and Ross, S. “Intertemporal General Equilibrium Model of Asset Prices.” Econometrica 53 (No. 2 1985): 363-84. [https://doi.org/10.2307/1911241]
  • Durrett, R. Brownian Motion and Martingales in Analysis. California: Wadsworth Advanced Books & Software, Belmont, 1984.
  • Eisenberg, L. Random Variance Option Pricing and Spread Valuation, Working Paper, University of Pennsylvania, 1985.
  • Epps, T., and Epps, M. “The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distribution Hypothesis.” Econometrica 44 (No. 2 1976): 305-21. [https://doi.org/10.2307/1912726]
  • Flood, R., and Hodrick, R. “Asset Price Volatility, Bubbles and Process Switching.” Journal of Finance 41 (No. 4 1986): 831-42. [https://doi.org/10.1111/j.1540-6261.1986.tb04551.x]
  • French, K., and Roll, R. “Stock Return Variances: The Arrival of Information and the Reaction of Traders.” Journal of Financial Economics 17 (No. 1 1986): 5-26. [https://doi.org/10.1016/0304-405X(86)90004-8]
  • French, K., Schwert, W., and Stambaugh, R. “Expected Stock Returns and Volatility.” Journal of Financial Economics 19 (No. 1 1987): 3-29. [https://doi.org/10.1016/0304-405X(87)90026-2]
  • Friedman, A. Stochastic Differential Equations and Applications. Academic Press, 1975. [https://doi.org/10.1016/B978-0-12-268201-8.50010-4]
  • Geske, R. “The Valuation of Corporate Liabilities as Compound Options.” Journal of Financial and Quantitative Analysis 12 (No. 4 1979): 541-52. [https://doi.org/10.2307/2330330]
  • Harrison, J., and Kreps, D. “Martingales and Arbitrage in Multiperiod Securities Markets.” Journal of Economic Theory 20 (No. 3 1979): 381-408. [https://doi.org/10.1016/0022-0531(79)90043-7]
  • Harrison, J., and Pliska, S. “Martingales and Stochastic Integrals in the Theory of Continuous Trading.” Stochastic Processes and Their Applications 11 (No. 3 1981): 215-60. [https://doi.org/10.1016/0304-4149(81)90026-0]
  • Heath, D., and Jarrow, R. “Arbitrage, Continuous Trading, and Margin Requirement.” Journal of Finance 42 (No. 5 1987): 1129-42. [https://doi.org/10.1111/j.1540-6261.1987.tb04357.x]
  • Heston, S. “A Closed-Form Solutions for Options with Stochastic Volatility with Applications to Bond and Currency Options.” Review of Financial Studies 6 (No. 2 1993): 325-43. [https://doi.org/10.1093/rfs/6.2.327]
  • Hull, J., and White, A. “The Pricing of Options on Assets with Stochastic Volatilities.” Journal of Finance 42 (No. 2 1987): 281-300. [https://doi.org/10.1111/j.1540-6261.1987.tb02568.x]
  • Johnson, H., and Shanno, D. “Option Pricing when the Volatility is Changing.” Journal of Financial and Quantitative Analysis 22 (No. 2 1987): 143-51. [https://doi.org/10.2307/2330709]
  • Karatzas, I., and Shreve, S. Brownian Motion and Stochastic Calculus. Spinger-Verlag, 1988. [https://doi.org/10.1007/978-1-4684-0302-2]
  • Kon, S. “Models of Stock Returns-A Comparison.” Journal of Finance 39 (No. 1 1984): 147-66. [https://doi.org/10.2307/2327673]
  • Kunita, H., and Watanabe, S. “On Square Integrable Martingales.” Nagoya Mathematics Journal 30 (1967): 209-45. [https://doi.org/10.1017/S0027763000012484]
  • Luenberger, D. Optimization by Vector Space Methods. Wiley, 1969.
  • Merville, L., and Pieptea, D. “Stock Price Volatility, Mean-Reverting Diffusion and Noise.” Journal of Financial Economics 24 (No. 1 1989): 193-214. [https://doi.org/10.1016/0304-405X(89)90078-0]
  • Merton, R. “Theory of Rational Option Pricing.” Bell Journal of Economics and Management Science 4 (No. 1 1973): 141-83. [https://doi.org/10.2307/3003143]
  • Roll, R. “An Analytical Valuation Formula for Unprotected American Call Options on Stock with Known Dividends.” Journal of Financial Economics 5 (No. 2 1977): 251-58. [https://doi.org/10.1016/0304-405X(77)90021-6]
  • Ross, S. “A Simple Approach to the Valuation of Risky Streams.” Journal of Business 51 (No. 3 1978): 453-75. [https://doi.org/10.1086/296008]
  • Rubinstein, M. “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978.” Journal of Finance 40 (No. 2 1985): 455-80. [https://doi.org/10.1111/j.1540-6261.1985.tb04967.x]
  • Schwert, W. “Why Does Stock Market Change over Time?” Journal of Finance 44 (No. 5 1989): 1115-54. [https://doi.org/10.1111/j.1540-6261.1989.tb02647.x]
  • Scott, L. “Option Pricing when the Variance Changes Randomly: Theory, Estimation and an Application.” Journal of Financial and Quantitative Analysis 22 (No. 4 1987): 419-38. [https://doi.org/10.2307/2330793]
  • West, K. “Bubbles, Fads and Stock Price Volatility Tests: A Partial Evaluation.” Journal of Finance 43 (No. 3 1988): 639-56. [https://doi.org/10.1111/j.1540-6261.1988.tb04596.x]
  • Wiggins, J. “Options Values under Stochastic Volatility.” Journal of Financial Economics 19 (No. 2 1987): 351-372. [https://doi.org/10.1016/0304-405X(87)90009-2]