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Although the literature has theoretically shown that multiple
cointegration relations are not uniquely defined, many empirical
analyses report and make use of such multiple cointegrations.
This paper shows that four long- maturity interest rates in the
United States contain two common factors and cointegration
rank is thus two. Multiple cointegration relations among four
interest rates are unstable and sensitive to small changes in the
number of observations. Through Monte Carlo sampling experi-
ments, the nature and the extent of instability are established.
Instead of multiple cointegration relations, stable irreducible
cointegration relations among three interest rates are presented.
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I. Introduction

Multiple cointegrations occur when there is more than one
cointegration relation among more than two nonstationary, I(1),
time series. For instance, among four I(1) time series, there are
four possibilities: no cointegration, one cointegration relation, two
cointegration relations, or three cointegration relations. That is, the
rank of cointegration is either O, 1, 2, or 3. The literature is
abundant with discussions for zero or one cointegration relation.
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This paper will investigate the issues of identification and
estimation when there are multiple cointegrations such that the
cointegration rank is either two or three among four I(1) series. In
particular, it will be shown that cointegration relations in multiple
cointegrations are unstable: estimated parameter values are
sensitive to small changes in the number of observations. The
situation is similar to the case of multicollinearity in multiple
regressions. A drop of one or two observations, say, out of 100
observations, would change the values of estimated regression
parameters substantially. In other words, the estimated cointegra-
tion relations are unstable and unreliable.

It should be noted here that multiple cointegrations discussed in
this paper are different from multicointegration in Granger and Lee
(1990), who describe the multiple layers of cointegration. Some I(2)
time series, for instance, may be cointegrated so that a linear
combination becomes I(1). This particular linear combination of I(1)
can be further cointegrated with some other I(1) time series in the
multicointegration.

Multiple cointegrations may occur in a simultaneous equations
model (SEM). Four I(1) endogenous series may be determined by a
four-equations SEM, in which some exogenous variables are I(1)
and some are I(0). Certain combinations of the four endogenous
variables are I(0), and some other combinations are I(1). When a
SEM is fully specified, the fact that certain combinations are I(1) or
I(0) is not essential, but only a by-product of the model. That is, a
SEM would show much fuller relations among endogenous and
exogenous variables than a mere cointegration investigation.
Naturally, we assume that such a SEM is not provided. Among four
I(1) series, the inquiry in this paper is whether some combinations
are either I(1) or I(0). Many analysts have reported the presence of
multiple cointegrations in various applications. The rank of
cointegration is typically investigated through the procedures
developed by Johansen (1988, 1991), Ahn and Reinsel (1990), and
Johansen and Juselius (1990).

The objective of this paper is to identify and estimate coin-
tegration relations in the term structure of United States interest
rates. It will be shown that multiple cointegration relations are not
identified. That is, there is no unique way to characterize a
cointegration relation when there is more than one such relation.
The significance of multiple cointegrations is shown to be the
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existence of cointegration among a subset of time series. That is,
when there are two cointegration relations among four I(1) series,
then any three of those four series will in general be also
cointegrated. Moreover, no unique cointegration relations can be
estimated by means of the conventional maximum likelihood
estimation (MLE) method when there are multiple cointegrations.
Instead of multiple cointegration relations, irreducible cointegration
relations, suggested by Wickens (1996), for a minimum set of
cointegrated I(1) time series should be investigated. We will make
use of the concept of latent common factors to establish the nature
of multiple cointegrations. Common I(1) factors are nonstationary
time series that would generate the given set of cointegrated time
series.

The structure of the paper is as follows. Section II formally
describes the role of latent common factors in multiple
cointegrations. Section III adopts the concept of irreducible
cointegration by Wickens (1996) to show how multiple cointegration
relations imply cointegration relations among certain subsets of
time series. Section IV applies multiple cointegrations and irre-
ducible cointegrations to the United States term structure of
interest rates. Monthly long-maturity (five-year, seven-year, ten-year,
and 30-year) rates from 1982:01 to 1999:12 are shown to contain
two I(1) common factors. Therefore, the cointegration rank is two
and stable irreducible cointegrations exist among every possible set
of three long-maturity rates. After illustrating how sensitive
estimated multiple cointegration relations are to the number of
observations in Section IV, a series of Monte Carlo sampling
experiments are conducted to show the nature and the extent of
parameter instability in Section V. Concluding remarks will be given
in Section VI

II. Multiple Cointegrations and Latent Common Factors

Consider a relationship, following Engle and Granger (1987),
between the two I(1) time series of yi; and y:

Y1it=2zt+&€1e, Y= Bzi+ €, (1)
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where z; is I(1), and &), and &y are I(0). Both yi;; and ys are I(1)
due to the dominance of z; over e; and &o. In general, a linear
combination of yo—Ayi;; becomes (B—A)z+eo—Aey, which is also
I(1). A particular combination of ys— By, however, becomes &o—
Bei, which is I(0) by construction. Hence, yi;; and ys in (1) are
cointegrated.

If z, in (1) were known or observed, then the fact that y;; and yx
are cointegrated would be trivial, because it should be known how
yic is determined by and how ys is determined by. A linear
combination between the two series being cointegrated would be a
by-product in the sense that both series happen to share a
common I(1) determinant. It is important to note that the
cointegration relation of yq— Byic is still 1(0) even if z is not
observed and hence it is latent. Under the assumption that z; in (1)
is not observed, it will be called a latent common factor, because
this latent factor commonly determines both y;; and ys. Between
the two I(1) series, they are either cointegrated or not cointegrated.
In order to meaningfully discuss multiple cointegrations, several
situations among four I(1) series will be discussed.

If there is one cointegration relation among four I(1) series, the
system will in general have three common factors as in

Y= B1zu+ B2za+ B3zZai+ e,
Yar=Z1t+ &2
Yst=2Za2t+ €3¢,
Yar=2Z3tt €4y,
z¢s are I(1) (which are not themselves cointegrated), and ¢;’'s are I(0).

2)

The coefficients of z/s for ysz, ys, and ys are normalized to unity.
As long as z/s are not observable, (2) is equivalent to, for instance,

Y= B1zu+ B2zac+ B3zsi+€ 1t

Yat= B1'Z1+ B2 zac+ B3 zsi+€ 2,

Yse= B1"zu+ B2" 2o+ B3 Za+ e 5 3)
Ya= B1" 21+ B 2o+ B3 zai+ € .

Without loss of generality, (3) can be written as (2) and therefore
there is one cointegration relation, namely, yi:—MYa:—Aoysi—AsYa:.
When the rank of cointegration is two so that there are two
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cointegration relations, then the system has two latent common
factors of z;; and za:

Yu= B1zu+ B2za+€ 1,

Y= B1'z1+ B2’z +€ 2, (4)
Yst= B1"zu+ B2 " za+ € 31,

Yau= B1"zZu+ B2" zo+ & 4.

which can also be written as, without loss of generality,

Y= B1z1t+ Bozar+ &1,
Y= B1'z1+ B2’ 2o+ €2,
Yst=2Z1t+ &3¢,

Yar=2Zot+ €4,

(5)

It is important to note, however, that any three time series of y/s
in (5) will also be cointegrated. Any three time series will share two
common factors so that there will be a unique -cointegration
relation. A cointegration relation among four time series is,
however, not unique. In fact, there is an infinite number of
cointegrating relations among the four variables. Wickens (1996),
Rossana (1998), Luukkonen, Ripatti, and Saikkonen (1999), and
others state that cointegration relations are in general not identified
when there are more than one relation.

When the rank of cointegration is three so that there are three
cointegration relations, then there will be only one latent common
factor. Without loss of generality such a system can be written as

yu= fi1zi+ €1,
Yai= B2zi+ €21,
Ysi= B3zi+ €31
Yar=2Z¢+ Eay.

(6)

In (6), any two time series will be cointegrated. Cointegration
relations between any two time series are well defined, but those
among either three or four time series are not identified. That is,
there will be infinitely many solutions to make yi:—Mya:—Aaysi—AsYa
into an I(0) series.

Finally, a system of four I(1) time series, which are not coin-
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tegrated, is

Yit=2Zit+ €1,
2t= Z2t+ €21,
Y (7)
Yst=2Z3t+ €3¢,
Yat=Z4t+ €4y,

where there are no common factors. Since the only requirement is
that z’s should be I(1) (which are not themselves cointegrated) and
e/s are 1(0), (7) can be further reduced to

yu:Zu’,
yzt:Zm’, (8)
y3t=23t’,
y4t:Z4t’,

by absorbing &/s into zs.

III. Irreducible Cointegrations

Wickens (1996) introduces the term, “irreducible cointegration,” to
denote a set of minimum number of I(1) time series, which are
cointegrated. For instance, if the rank of cointegration is two
among four I(1) series, then in general any three I(1) series will be
cointegrated. Any two I(1) series, however, will not be cointegrated
so that irreducible cointegration occurs with three series. If the
rank of cointegration is three among four I(1) series, then
irreducible cointegration occurs with any two time series. Of course,
if the rank of cointegration is one, then the original system of four
time series will also constitute an irreducible cointegration. The
concept of irreducible cointegration is important to identify
cointegration relations. If cointegration is not irreducible, then there
are multiple cointegrations, of which relations are not identified.
For instance, if three time series are of an irreducible cointegration,
then an addition of any I(1) series will also be cointegrated,
because the weight for the additional series could take a value of
zero. For irreducible cointegrations, cointegration relation is
uniquely defined, within a multiplicative factor. That is, if yi.— Bya
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is a cointegration relation so that [1,—f] is the cointegration vector,
then [A,—A 4] will also be a cointegration vector with a non-zero A.
Yet, if cointegration is not irreducible to have more than one
cointegration relation, then there will be infinitely many vectors,
beyond the multiplicative factor. This is because a linear combi-
nation of two or more I(0) cointegration relations is in general also
an I(0) series. The fact that multiple cointegration vectors are
not uniquely determined is well established in the literature.
Nevertheless, in applied cointegration analysis, many analysts report
and make use of multiple cointegrations, although they are not
uniquely identified and therefore arbitrary.

Since the cointegration relations are unique within the mul-
tiplicative factor, a particular normalization is needed. For instance,
suppose Byt Baya+ Bsys is 1(0) so that [B1, B2, B3] is a coin-
tegration vector. Normalization is made to have, say, B1=1 so that
a unique vector is obtained as [1, B:’, B2’]. The situation is
different under the multiple cointegrations. If the rank of
cointegration is two for three I(1) series, then there are infinitely
many cointegration vectors. Normalization alone will not obtain a
unique vector. That is, even with normalization, [1, Bi, B2, there
are still infinitely many combinations of B; and B2 to satisfy the
cointegration condition. In such cases, a further normalization such
as [1, 1, A] will work to obtain a unique vector. Under irreducible
cointegrations, one of the last two values is further restricted to be
zero, for instance, to have [1, B, O] by removing a third time
series.

IV. Term Structure of Interest Rates in the United States

A. The data

Monthly interest rates are retrieved from St. Louis Federal
Reserve Bank database, FRED, from January 1982 to December
1999 for long-maturity rates of five-year, seven-year, ten-year, and
30-year rates. Below all the interest rates are transformed through
logarithmic transformations of log (1.+annualized rate/100). Those
four interest rates, after the transformations, are denoted as Y5,
Y7, Y10, and Y30. As typically done in the literature, the presence
of unit roots is investigated by means of the Dickey-Fuller test
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procedure. Each of four rates has one unit root at the 5%
significant level. According to the literature, interest rates are
sometimes I(0) and sometimes I(1), depending on the maturity and
depending on the time period. For the sample period studied, those
four long-maturity interest rates are all I(1).

In the literature, many researchers in fact report that various
configurations of interest rates contain multiple cointegrations. For
the system of k interest rates, the order of cointegration is reported
to be k-1. Stock and Watson (1988) show that the federal funds
rate, 90-day Treasury bill rate, and one-year Treasury bill rate in
the United States have one common I(1) factor. Engsted and
Tanggaard (1994) show that eleven interest rates, ranging from
one-month to 15-year rates for Danish bond market, contain one
common I(1) factor. Every pair of eleven interest rates is
cointegrated. Cuthbertson, Hayes, and Nitzsche (1998) report that
one-, three-, six-, and 12-month interest rates in the United
Kingdom have one common I(1) factor and that one-, two-, three-,
six-, and 12-month rates in Germany also have only one common
I(1) factor. For long-maturity interest rates, Bowe and Mylonidis
(1999) show that three-, five-, seven-, and ten-year European ECU
interest rates share one common I(1) factor. These researchers all
report that the (irreducible) cointegration is found between any two
interest rates.

The literature frequently reports, only implicitly though, that
multiple cointegration relations are unstable. Bradley and Lumpkin
(1992) investigate the cointegration relations among seven United
States Treasury rates from three-month to 30-year rates. They
estimate cointegration relations by regressing each of seven rates as
the dependent variable on the other six rates. When those seven
regression relations obtained from ordinary least squares (OLS)
method are re-expressed such that the same rate appears on the
left-hand side, the regression coefficients are very different. That is,
the cointegration relations from OLS are very sensitive to the
normalization. There are many analysts listed above who report
that the number of common factors is greater than one in the term
structure of interest rates. That is, irreducible cointegration would
contain more than two interest rates. The nature of irreducible
cointegration depends on the maturity and the time period of
investigation.

In general, the rank of cointegration is found to be greater than
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one when more than two interest rates of different maturity are
analyzed as in Arshanapalli and Doukas (1994), Choi and Wohar
(1991, 1995), Engsted (1993), Guest and McLean (1998), Hiraki,
Shiraishi, and Takezawa (1996), Mandeno and Giles (1995),
McDermott (1998), McFadyen, Pickerill, and Devaney (1991), Shea
(1992), Wallace and Warner (1993), and Warne (1997) for various
maturities and for many countries. That is, multiple cointegrations
have been commonly reported for the term structure of interest
rates.

The maximum likelihood estimation (MLE) method by Johansen
and Juselius (1990) reveals that the order of cointegration is two
among the four rates of Y5, Y7, Y10, and Y30. There are two
common I(1) factors for these four rates. Any three out of four
long-maturity rates are therefore cointegrated. Needless to say, the
system of all four rates is also cointegrated. All the analyses for the
interest rates are conducted by using RATS (Regression Analysis of
Time Series), Version 4, and CATS (Cointegration Analysis of Time
Series). The cointegration results from the MLE, by using the lag
length of one throughout, are provided in Table 1 for various
sample periods. The first one uses all 216 observations from
1982:01 to 1999:12. Subsequently, the number of observations is
reduced by two by eliminating the most recent two months from
the sample period. The number of observation runs from 216 at
the top to 200 at the bottom.

In Table 1, cointegration relations are all expressed such that the
same five-year rate (Y5) is written in terms of the other rates. The
MLE results from various numbers of observations show that the
cointegration relations are indeed very sensitive to the number of
observations. For instance, the coefficient of the seven-year rate
(Y7) changes from 0.57751 with 214 observations to 1.95858 with
200 observations. The latter coefficient is almost 3.4 times the
former value, although the number of observation differs by 14
observations, which is about 6.5%. The coefficient of ten-year rate
(Y10) shows even larger variations from -0.84892 with 200
observations to +1.37134 with 214 observations. Similarly, the
coefficient of 30-year rate (Y30) varies from -1.01217 with 214
observations to -0.12963 with 200 observations. The former is
about 7.8 times greater than the latter in absolute values. Three
sets of coefficients are plotted in Figure 1. The number of
observations in Figure 1 increases from 200 to 216. The picture
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TABLE 1
MULTIPLE COINTEGRATIONS AMONG FOUR LONG-MATURITY INTEREST RATES.

Y5 =five-year rate; Y7 =seven-year rate; Y10=ten-year rate; and
Y30=30-year rate
Between 1982:01 and 1999:12 (216 observations)
Y5 =constant+0.73579 Y7+1.09165 Y10—-0.88241 Y30

Between 1982:01 and 1999:10 (214 observations)
Y5=constant+0.57751 Y7+1.37134 Y10—1.01217 Y30

Between 1982:01 and 1999:08 (212 observations)
Y5=constant+0.65880 Y7+1.24120 Y10—-0.96013 Y30

Between 1982:01 and 1999:06 (210 observations)
Y5=constant+1.10893 Y7+0.50001 Y10—0.65215 Y30

Between 1982:01 and 1999:04 (208 observations)
Y5=constant+1.34852 Y7+0.12215 Y10—-0.50659 Y30

Between 1982:01 and 1999:02 (206 observations)
Y5=constant+1.45514 Y7 —0.04830 Y10—0.43950 Y30

Between 1982:01 and 1998:12 (204 observations)
Y5=constant+1.75765 Y7 —0.52728 Y10-0.25337 Y30

Between 1982:01 and 1998:10 (202 observations)
Y5=constant+1.88273 Y7 —0.72039 Y10—0.18404 Y30

Between 1982:01 and 1998:08 (200 observations)
Y5=constant+ 1.95858 Y7 —0.84892 Y10-0.12963 Y30

2 -
Coefficient | \\ — —e— Coef of Y7
estimates W —&— Coef of Y10
0 :::‘.74'\‘\‘\ —a— Coef of Y30
-1 —t

190 200 210 220
Number of observations

Model: Y5=constant+ (Coef of Y7)*Y7 + (Coef of Y10)*Y10+ (Coef of Y30)*Y30

FIGURE 1
UNSTABLE COINTEGRATION RELATIONS AMONG FOUR LONG-MATURITY RATES

Note: The estimates are from Table 1 and the number of observation
changes from 216 to 200 (but, reversed in the figure).
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TABLE 2
IRREDUCIBLE COINTEGRATIONS AMONG FOUR LONG-MATURITY INTEREST RATES

Among Y5 (five-year rate), Y7 (seven-year rate), and Y10 (ten-year rate)
216 observations: Y5=constant+ 1.82453 Y7 —0.82845 Y10

210 observations: Y5=constant+1.93856 Y7—-0.94373 Y10

205 observations: Y5=constant+2.08138 Y7—1.08897 Y10

200 observations: Y5=constant+2.14816 Y7—1.16141 Y10

Among Y5 (five-year rate), Y7 (seven-year rate), and Y30 (30-year rate)
216 observations: Y5=constant+1.36815 Y7—0.39567 Y30

210 observations: Y5=constant+ 1.40629 Y7—0.43789 Y30

205 observations: Y5=constant+ 1.42895 Y7 —0.46382 Y30

200 observations: Y5=constant+1.43122 Y7—-0.46771 Y30

Among Y5 (five-year rate), Y10 (ten-year rate), and Y30 (30-year rate)
216 observations: Y5 =constant+2.35824 Y10—1.44853 Y30

210 observations: Y5 =constant+2.37656 Y10—1.46891 Y30

205 observations: Y5 =constant+2.36611 Y10—1.45972 Y30

200 observations: Y5=constant+2.33581 Y10—1.42045 Y30

Among Y7 (seven-year rate), Y10 (ten-year rate), and Y30 (30-year rate)
216 observations: Y7 =constant+1.75700 Y10—-0.80527 Y30

210 observations: Y7 =constant+1.72931 Y10—-0.77519 Y30

205 observations: Y7 =constant+1.66958 Y10—-0.71260 Y30

200 observations: Y7 =constant+1.61990 Y10—-0.65234 Y30

shows that all three -coefficients vary substantially with small
changes in the number of observations. That is, cointegration
relations in multiple cointegrations are unstable and unreliable. The
nature of instability in multiple cointegrations is very similar to
that of multicollinearity in multiple regressions (Greene 2000, p.
256).

On the other hand, Table 2 shows the irreducible cointegrations
for long-maturity interest rates. Since there are two common I(1)
factors among the four interest rates, or in turn, the cointegration
rank is two, any three of the four interest rates are cointegrated.
Table 2 shows the MLE (with lag length one) results for the four
different sets of irreducible cointegrations. There are four subsets of
three interest rates, for which the MLE results are provided in each
panel. In each panel, four different numbers of observations are
tried. The first one is by using all 216 observations, the next one



42 SEOUL JOURNAL OF ECONOMICS

is from 210 by eliminating the most recent six observations. The
next two MLE results are, respectively, from 205 and 200
observations, by again eliminating the appropriate number of the
most recent observations from the investigation.

The irreducible cointegration relations are stable in Table 2. They
are very stable especially when they are compared with those
variations in Table 1. The variation of the coefficients in the
cointegration relations is rather small. Among five-year rate (Y9),
ten-year rate (Y10), and 30-year rate (Y30) given under the third
Panel, both the variations from the smallest to the largest
coefficients of Y10 and those of Y30 are less than 2% when the
number of observations change from 216 to 200. The coefficient of
the ten-year rate (Y10) in the first Panel shows the largest
variation: the largest coefficient from 200 observations is about 40%
bigger than the smallest coefficient, both in absolute values, from
216 observations. Though the differences among the coefficients are
not tested for their statistical differences, the largest change of 40%
is much smaller than those tremendous changes in Table 1. Table
2 shows that the irreducible cointegration relations are much more
stable than multiple cointegrations.

In general, cointegration relations will also depend on the nature
of cointegrated time series. It is possible that there might be
structural changes within the sample period to exhibit (large)
fluctuations in the estimation. In order to firmly establish the
nature and the extent of the coefficient stability in both multiple
cointegrations and irreducible cointegrations, a series of sampling
experiments will be conduced next.

V. Monte Carlo Experiments

Though strongly suggestive, the results in Tables 1 and 2 do not
concretely show whether the instability is in fact due to the
presence of the multiple cointegrations. Even if there is a unique
cointegration, cointegration relations can be unstable if there is, for
instance, a structural change in the sample. In order to show the
nature and the extent of the parameter instability, a series of
Monte Carlo experiments are conducted. In the first series of
experiments, three I(1) time series are generated such that there
are two cointegration relations. Multiple cointegration relations are
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estimated by the MLE with different numbers of observations. In
particular, the following model is used for the multiple cointegra-
tions:

yu= Pizi+eu,
Yar= B2zi+ €, 9)
Yat=2¢+ €3t

In order to make the data generating process (DGP) simple, z is
generated as a random walk series and each of &'s is indepen-
dently and identically distributed (iid) normal deviates with the
standard deviations of 5.0. Moreover, all three &’'s are separately
generated to make them mutually uncorrelated. By using FORTRAN,
three series of 100 observations are generated from the standard
normal distribution by using an IMSL (International Mathematical
and Statistical Library) subroutine, rnnor. The common factor of z
is then generated by

Z1:1.0+Z1.1+841, (10)

where &4 is an additional iid normal deviate with the standard
deviation of 10.0. The initial value of zero is used for z so that it
becomes a random walk series.

Once three series of y’s are generated from (9), the presence of a
unit root is checked by using the Dickey-Fuller test procedure. If
any of three y/s does not contain a unit root, then the particular
replication is ignored from further analyses. This step guarantees
that the time series are indeed I(1). Once those three time series
are found to be I(1), then they are used to estimate one
cointegration relation. Although there are two cointegration rela-
tions, the MLE procedure of Johansen and Juselius (1990), which
is detailed in Hamilton (1994, pp. 635-8) for step by step instruc-
tions, would produce one single cointegration relation. Once the
cointegration relation is found by the MLE with the lag length of
one, the residuals are checked to see if indeed the given linear
combination is I(0). The entire process is repeated 10,000 times in
the Monte Carlo experiment.

The estimated results for four different numbers of observations
— 100, 98, 96, and 94 — are listed in Table 3. When the certain
number of observations is eliminated, the last several observations
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TABLE 3
UNSTABLE COINTEGRATION RELATIONS IN MULTIPLE COINTEGRATIONS

True Model: y=1.5 z+¢&1; Yy2=0.8z+¢€2; and ys=z+ €3
Estimation: yi,—a—byaz—cys=1(0). The values of a, b, and ¢ are not well
defined.

Panel A: MLE results

(1) (2) (3 (4

NOB 100 98 96 94
a 1.3782 -3.4942 -0.5251 -0.6387
(113.23) (293.23) (57.17) (58.16)
b 0.6242 1.8604 0.1279 1.7104
(78.66) (619.82) (104.70) (103.78)
c 0.9908 0.1323 1.4257 0.1383
(63.21) (488.01) (86.46) (82.33)

Panel B: Correlation coefficients

a(NOB) a(100) a(98) a(96) a(94)
a(100) 1.00000 0.00404 0.02303 -0.00674
[0.6862] [0.0213] [0.5002]
a(98) 1.00000 0.03349 0.00702
[0.0008] [0.4826]
a(96) 1.00000 0.00586
[0.5578]
b(NOB) b(100) b(98) b(96) b(94)
b(100) 1.00000 0.00637 0.02723 0.01255
[0.5240] [0.0065] [0.2094]
b(98) 1.00000 0.00637 -0.00776
[0.5010] [0.4376]
b(96) 1.00000 -0.17813
[0.0001]
c(NOB) c(100) c(98) c(96) c(94)
c(100) 1.00000 0.00617 0.02604 0.01258
[0.5370] [0.0092] [0.2085]
c(98) 1.00000 0.00649 -0.00792
[0.5163] [0.4283]
c(96) 1.00000 -0.17098
[0.0001]

Note: Values in parentheses are standard deviations over 10,000 replications
and those in brackets are p-values to test if correlation coefficients
are zero.
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are taken out of the investigation. That is, when the number of
observation is 96, the sample consists of the first 96 observations
out of the total 100 observations originally generated. Regardless of
the number of observations, each of 10,000 replications is found to
be indeed cointegrated.

It should be noted that the multiple cointegration relations in
Table 3 are not well defined and therefore no specific values are to
be expected for the coefficients. The values in the table are the
mean values of a, b, and ¢ over those 10,000 replications in the
experiment. Values in parentheses are standard deviations over the
same 10,000 replications in Panel A. For any coefficient, the mean
values are very different from one column to another. The drop of
two, four, or six observations from the original 100 makes a large
difference in the mean values for the cointegration relations.
Equally important is the large values of the standard deviations.
Even with the same number of observations, multiple cointegration
relations vary tremendously from one replication to another.

In Panel B of Table 3, simple Pearson correlation coefficients are
computed for each coefficient for the given number of observations
in order to investigate the stability of the coefficients. For instance,
for the coefficient of c¢, the correlation coefficient between c from
100 observations and c¢ from 98 observations is 0.00617, which is
not significantly different from zero. The statistical significance of
correlation coefficients is given in brackets for their p-values. Some
correlation coefficients are statistically different from zero. For
instance, b from 100 observations and b from 96 observations have
the correlation coefficient of 0.02723, which has the p-value of
0.0065 indicating that it is significant at the 1% significance level.
But the coefficient is not numerically very different from zero. Some
correlation coefficients are even negative. They are all numerically
close to zero indicating the extreme instability of cointegration
relations in this experiment of the multiple cointegrations.

Different measures of coefficient stability are computed. In Table
4, mean deviations, mean absolute deviations, and mean squared
deviations are computed over the same 10,000 replications. Three
columns are for the estimates of a, b, and c. The first row in each
panel is for the difference between the results from 100 observa-
tions and those from 98 observations. For instance, the mean
absolute deviation for b between 100 observations and 96 obser-
vations is 9.4415. Again, this value is very large indicating that the
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TABLE 4
DIFFERENCES IN THE PARAMETER ESTIMATES IN MULTIPLE COINTEGRATIONS

True Model: yi=1.5zi+ €1 Yy2=0.8z+¢€2; and ysi=2z¢+ €3¢
Estimation: yi.—a— bya— cys=1(0).

Panel A: Mean deviations

a b c
Mean deviations (x100-x98) 4.8724 -1.2361 0.8586
Mean deviations (x100-x96) 1.9033 0.4963 -0.4349
Mean deviations (x100-x94) 2.0169 -1.0861 0.8526

Panel B: Mean absolute deviations (MAD)

a b c
MAD (x100-x98) 12.3985 17.3808 13.8260
MAD (x100-x96) 8.4817 9.4415 7.6024
MAD (x100-x94) 8.2247 8.9030 7.1254

Panel C: Mean squared deviations (MSD)

a b c
MSD (x100-x98) 98547.84 389705.48  241744.11
MSD (x100-x96) 15793.48 16699.82 11185.94
MSD (x100-x94) 16295.20 16752.21 10642.99

Note: In each panel, x100, for instance, indicates parameter estimates of
X(a, b, or ¢) when the number of observations is 100.

instability in Table 3 is not due to just several extreme values.
Rather the instability is pervasive and substantial from one
replication to another. Both mean absolute deviations and mean
squared deviations are also very large indeed.

In the next series of Monte Carlo experiments, the parameter
stability of irreducible cointegration is to be established. To this
end, the following model is used for the DGP.

yuu= B1zu+ B2zai+ €11
Yot=Z1t+ €24, (11)
Yst=Zat+ €3¢,

where each of ¢'s is iid series. The three series of &/s, with the
standard deviations of 5.0, are separately generated to make them
mutually uncorrelated. Two additional iid normal deviates with the
standard deviations of 10.0, &4 and &5, are generated with which
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TABLE 5
STABLE COINTEGRATION RELATIONS IN IRREDUCIBLE COINTEGRATIONS

True Model: yi=1.521+0.822+ €15 Yar=21+ €2 and ysi=2za+ €3¢

Estimation: yi;—a—byz—c ys=1(0). Expected values are a=0.0, b=1.5,

and ¢=0.8.

Panel A: MLE results
(1)

NOB 100
a -0.0530
(2.518)
b 1.5005
(0.040)
c 0.8000
(0.040)

Panel B: Correlation coefficients

a(NOB) a(100)
a(100) 1.00000
a(95)
a(90)

b(NOB) b(100)
b(100) 1.00000
b(95)
b(90)

c(NOB) c(100)
¢(100) 1.00000
c(95)
c(90)

(2)
95

-0.0547
(2.600)

1.5005
(0.043)

0.8000
(0.043)

a(95)

0.96619
[0.0001]

1.00000

b(95)

0.93355
[0.0001]

1.00000

c(95)

0.93294
[0.0001]

1.00000

(3
90

-0.0417
(2.710)

1.5006
(0.047)

0.7996
(0.047)

al(90)

0.93037
[0.0001]

0.96444
[0.0001]

1.00000

b(90)

0.85919
[0.0001]

0.92551
[0.0001]

1.00000

c(90)

0.86429
[0.0001]

0.92718
[0.0001]

1.00000

(4
85

-0.0406
(2.861)

1.5008
(0.052)

0.7995
(0.052)

a(85)

0.87477
[0.0001]

0.90838
[0.0001]

0.94420
[0.0001]

b(85)

0.78353
[0.0001]

0.84140
[0.0001]

0.90614
[0.0001]

c(85)

0.78448
[0.0001]

0.84186
[0.0001]

0.91335
[0.0001]

Note: Values in parentheses are standard deviations over 10,000 replications
and those in brackets are p-values to test if correlation coefficients

are Zzero.
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two I(1) factors of z;; and 2z, are obtained by

Z1=1.0+211+ €4y, (12)
Z9t=1.0+ 2911+ €54,

where the initial values are, as before, set to zero. Once 100
observations of z’s and &’s are thus generated, three y/s of 100
observations are computed through (11). By construction, there
isonly one cointegration relation. That is, those three y/s constitute
the irreducible cointegration in this experiment. As before, each of
yis is checked to make sure to be indeed I(1). The cointegration
relation is then estimated by the MLE by using the lag length of
one. The experiments are repeated 10,000 times, and each
replication starts with new sets of normal deviates. In this way, all
10,000 experiments are made to be independent of one another.

Since there is only one cointegration relation, it is uniquely
determined. Since B, is set to 1.5 and B. is set to 0.8, we expect
that yi;;=constant+1.5y2+0.8ys; is the true cointegration relation.
In order to discuss the parameter estimate stability, four different
numbers of observations are used. But in this case, the following
four observations are used: 100, 95, 90, and 85. Therefore, the
degree of elimination of the last few observations is much severer
here than in the earlier experiment, in which the numbers of
observations are 100, 98, 96, and 94. Regardless of the observation
numbers, the three time series are cointegrated in each of all
10,000 replications. The results from the MLE are provided in
Table 5.

Cointegration relations are well defined for the irreducible
cointegration. The estimate of a is expected to be zero, that of b is
expected to be 1.5, and that of c¢ is expected to be 0.8, because
those values are used in the DGP. The MLE estimates in Panel A
show that those true values are estimated very precisely. Values in
parentheses are standard deviations over the 10,000 replications.
The standard deviations for b and c¢ are small indicating that the
true values of 1.5 and 0.8 are indeed precisely estimated. Perhaps
more importantly, the estimates are not sensitive to the number of
observations used in the investigation. In Panel B, simple Pearson
correlation coefficients are computed over the same 10,000 repli-
cations, for instance, between b from 100 observations and b from
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TABLE 6
DIFFERENCES IN THE PARAMETER ESTIMATES IN IRREDUCIBLE
COINTEGRATIONS

True Model: yi=1.521+0.822+ €15 Yar=21+ €2 and ysi=2za+ €3¢

Estimation: yi—a—bya—cys=1(0).

Panel A: Mean deviations

a b c
Mean deviations (x100-x95) 0.0017 0.000044 0.000044
Mean deviations (x100-x90) -0.0113 -0.000019 0.000370
Mean deviations (x100-x85) -0.0124 -0.000290 0.000500

Panel B: Mean absolute deviations (MAD)

a b c
MAD (x100-x95) 0.4170 0.0095 0.0094
MAD (x100-x90) 0.6229 0.0148 0.0145
MAD (x100-x85) 0.8183 0.0198 0.0195

Panel C: Mean squared deviations (MSD)

a b c
MSD (x100-x95) 0.4494 0.00024 0.00024
MSD (x100-x90) 0.9869 0.00058 0.00056
MSD (x100-x85) 1.9218 0.00100 0.00100

Note: In each panel, x100, for instance, indicates parameter estimates of
X(a, b, or ¢) when the number of observations is 100.

90 observations, which is 0.93355. This is significantly different
from zero with the p-value of 0.0001. As expected, the correlation
coefficient is the smallest when it is computed between 100
observations and 85 observations. The smallest of all correlation
coefficient is 0.78353 for b nevertheless. Those values in Table 5
should be compared to the entries in Table 3 in order to contrast
the stability in Table 5 and the instability in Table 3.

As before, mean deviations, mean absolute deviations, and mean
squared deviations are reported in Table 6. All these measures
indicate that the cointegration relations in this experiment are very
stable. Especially for b and c, coefficients for I(1) time series, the
measures in Table 6 show that cointegration relations are very
stable when five, ten, or even 15 observations are removed from
the 100 observations. The cointegration relations are obtained to be
close to the true values with little variations. More importantly,
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they are not very sensitive to the changes in the number of
observations.

VI. Conclusions

When a system of I(1) time series is cointegrated, there is a
possibility that there are more than one cointegration relation.
Suppose there are r cointegration relations among k I(1) time
series. Then the number of common I(1) factor must be k-r. If a
simultaneous equations model is fully provided, then the fact that
there are lk-r common factors and there are r cointegration relations
is not very informative, because the given model specifies how each
of I(1) endogenous variables is exactly determined by I(1) and I(0)
exogenous variables. The inquiry into the cointegration becomes
important when such a simultaneous equations model is not fully
specified, and those common I(1) factors therefore are necessarily
assumed to be latent.

When there is a multiple cointegration, however, the cointegration
relations are not well defined, because there is an infinite number
of cointegration relations possible. In this paper, we show that the
presence of multiple cointegrations should lead to a construction of
irreducible cointegration, in which the minimum set of I(1) series is
searched to be cointegrated. A removal of any I(1) series from an
irreducible cointegration will make the system no longer cointegrated.
Moreover, once a set of I(1) series is cointegrated, an addition of
any, whether related or wunrelated, I(1) series will make the
extended set also cointegrated, because the weight to the additional
I(1) series can take a value of zero to maintain the set cointegrated.

The use the long-maturity interest rates in the United States
shows the importance of estimating the irreducible cointegration
relations. The four long-maturity rates of five-year, seven-year,
ten-year, and 30-year, there is a multiple cointegration such that
any three out of the four interest rates are also cointegrated. More
importantly, the multiple cointegration relations are unreliable and
unstable. The relations obtained from the MLE are very sensitive to
a small change in the number of observations. When a few
observations are removed from 216 observations, the cointegration
relations substantially change. Although the statistical discrepancies
are not tested for their significance, parameter estimates change
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substantially. On the other hand, the cointegration relations in the
irreducible cointegration are very stable. In the case of the
long-term interest rates, cointegration should be discussed in terms
of three out of four rates. The instability of cointegration relations
in multiple cointegrations is similar to that of regression coefficients
in multiple regression equations. One standard way to resolve the
difficulty of multicollinearity is to drop one or more variables from
regressors (Greene 2000, p. 258). By dropping one or more I(1)
series from multiple cointegrations to achieve irreducible cointegra-
tions is also very similar to the solution for the multicollinearity.

In order to show the nature and the extent of the instability of
multiple cointegrations, two sets of Monte Carlo experiments are
conducted. As expected, parameter estimates are very unstable and
unreliable from multiple cointegrations, whereas they are stable
from irreducible cointegrations. When a given set of I(1) time series
are cointegrated, analysts should identify and estimate the
irreducible cointegration relations, because multiple cointegration
relations are not uniquely defined and therefore they are unstable.

(Received 28 November 2002; Revised 18 December 2002)
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