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I. Introduction

This paper is a survey of stochastic frontier models. Stochastic 

frontier models were introduced by Aigner, Lovell, and Schmidt (1977) 

and Meeusen and van den Broeck (1977). Since then a very large 
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literature has developed on this topic, and a comprehensive survey 

would be at least book-length (e.g., Kumbhakar and Lovell 2000). Of 

necessity our survey will be selective. Not surprisingly, we will pay the 

most attention to those aspects of the literature to which we have 

contributed. The omission of other topics does not mean that we 

consider them unimportant. 

The plan of the paper is as follows. Section 2 defines technical 

efficiency, the concept whose measurement is the point of these 

models. Section 3 considers the basic cross-sectional stochastic frontier 

model, and Section 4 discusses models in which technical inefficiency 

depends on explanatory variables. Section 5 covers the stochastic 

frontier model with panel data and time-invariant technical inefficiency. 

Section 6 discusses panel data models in which technical inefficiency 

changes over time. Section 7 considers the problem of inference on the 

inefficiencies. Finally, Section 8 gives our concluding remarks and 

some predictions about likely future developments in the field.

II. Definition of Technical Efficiency and Inefficiency

Technical inefficiency can be defined as the failure to produce 

maximal possible output, given input levels. Comparing actual output 

to maximal possible output gives rise to an “output based” inefficiency 

measure. Alternatively, technical inefficiency can be thought of as the 

failure to use the minimal possible inputs to produce a given output 

level. Comparing the actual inputs to the minimal possible inputs gives 

rise to an “input based” inefficiency measure. 

Figure 1 illustrates the input-based definition of technical efficiency 

proposed in the classic paper by Farrell (1957). Suppose that we 

have one output and two inputs, so that the production function 

is y＝f (X1, X2 ) where y is output and X1 and X2 are inputs. Suppose 

that a firm produces output y0 using input quantities (X 1
1, X 2

1). This is 

represented as point B on the graph. Point B is above the isoquant for 

output level y0, Isoq (y0 ). It could produce output level y0 at point A, 

which has the same input proportions as B but is on Isoq (y0 ). The 

input-based measure of the technical efficiency of this firm is defined 

as OA/OB (where OA and OB are the distances of points A and B from 

the origin), and its input-based technical inefficiency is 1－OA/OB. 

More formally, the Farrell input-based efficiency measure is defined as 

TEI＝Min {λ∋(y, λ X ) is feasible }.
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FIGURE 1

THE INPUT-BASED MEASURE OF TECHNICAL EFFICIENCY
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Alternatively, the firm using inputs (X1
1, X2

1) could increase its output 

to y1, the output level corresponding to the isoquant on which point B 

is located. The output based measure of the technical efficiency of this 

firm would be y0/y1, the ratio of actual output to potential output, 

given the input levels; its output-based technical inefficiency would be 

1－y0/y1. More formally, the output-based efficiency measure is defined 

as 

TEO＝Min {θ ∋(y/θ, X ) is feasible }.

In this paper, we will consider output-based efficiency measures. 

Also, we will consider only the case of a single output. In this case it is 

natural and convenient to think in terms of production functions 

(rather than the corresponding isoquants). The production frontier is 

the production function that gives maximal possible output, given 

inputs, and technical efficiency is measured simply as the ratio of 

actual output to the frontier output, given the input quantities used.

III. Cross Section Stochastic Frontier Models

The first production frontier models were deterministic. Let Y be 

output in levels and y be output in logs. The frontier for y is f (x ), and 

y≤ f (x): actual output is always less than or equal to the frontier. We 
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express this inequality with a one-sided (non-positive) additive error 

term: y＝f (x )－u, with u≥0. Exponentiating, we have Y＝ey＝e f (x)e－u. 

Therefore, e－u＝Y/e f (x)＝actual output divided by possible output＝ 

technical efficiency (TE) and technical inefficiency＝1－e
－u. However, 

1－e－u is approximately equal to u (the approximation is quite good for 

small values of u) and often we will simply refer to u as technical 

inefficiency. 

Empirically, we will generally want to use a linear function (which 

includes Cobb-Douglas or translog technologies), and the linear deter- 

ministic production frontier model is

yi＝α0＋x
i
’β－ui ,  ui ≥0,   i＝1, 2, …, N             (1)

where yi is log output, x i is a K ×1 vector of inputs (generally in logs), 

β is the vector of regression coefficients and ui is technical inefficiency. 

The objective is not only to estimate β but also to estimate ui. 

Aigner and Chu (1968) estimate the frontier using linear and 

quadratic programming:

LP : Min
 N

∑
i＝1

|y
i
－α0－x i’β|  subject to y

i
≤α0＋x i’β for all i

QP : Min
 N

∑
i＝1

[y
i
－α0－x i’β]

2
 subject to y

i
≤α0＋x i’β for all i ,

where the minimization is with respect to α0 and β. Technical 

inefficiency of firm i is calculated as the difference between actual 

output and the estimated frontier.

Stochastic production frontier models, proposed by Aigner, Lovell, 

and Schmidt (1977) (hereafter ALS1977) and Meeusen and van den 

Broeck (1977), make the production frontier stochastic. The model is of 

the form: 

y
i
＝α0＋x i’β＋ε i

 ,   ε i＝vi －ui,   i＝1, 2, …, N          (2)

The “composed error” ε i＝vi－ui is made up of both a statistical 

noise term vi and the technical inefficiency ui≥0. The frontier is 

α
0
＋x

i
’β＋vi, which is stochastic because it includes vi. Identification of 

this model requires strong assumptions. Specific distributional assump- 

tions need to be made for v and for u. For example it is often assumed 
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that v is normal and that u is half-normal. Also v, u and x are 

assumed to be independent. This is a strong assumption since it rules 

out the possibility that a firm’s input choices are influenced by its level 

of technical inefficiency.

The estimates of the parameters of the model are usually obtained 

by maximum likelihood estimation (MLE), that is, by maximization of 

the likelihood function:

lnL＝
 N

∑
i＝1

lnk (yi－α0－x i’β )                                    (3)

where k (ε )＝∫0
∞ 
h (u, ε＋u )du, h(u, v)＝f (v) g(u) and f (v) and g (u) are 

the probability density functions of u and v, respectively.

Different models can be generated by different assumptions about 

the distribution of u. For example, ALS1977 considered the case that u 

was exponential as well as the case that it was half-normal. Stevenson 

(1980) assumed a general truncated normal distribution and Greene 

(1980, 1990) assumed a gamma distribution. Empirically, the choice of 

distributional assumptions matters; different assumptions yield different 

results. Kumbhakar and Lovell (2000) discuss this issue at some 

length. Only very recently (Wang, Amsler, and Schmidt 2008) have 

goodness of fit tests been developed to allow one to test these 

distributional assumptions.

The main focus is on the estimation of technical inefficiency. We 

cannot simply calculate technical inefficiency by subtracting yi from 

the frontier, since the frontier contains the statistical noise vi term  

which is not observable. We can estimate ε i as ε ̂i＝yi－α ̂
0－x

i
’β ̂ but this 

is an estimate of ε i＝vi－ui, and we need somehow to separate ui from 

vi. The standard estimate, suggested by Jondrow, Lovell, Materov, and 

Schmidt (1982), is the conditional expectation of ui given ε i＝vi－ui, 

evaluated at the fitted values of ε i (i.e., ε ̂i ) and the estimated values of 

the parameters. With a half normal assumption for u, the estimate is 

ûi＝E (ui|ε i )＝μ i
＊＋σ＊[

φ (－μ i
＊/σ

＊
)

1－Φ (－μ i
＊/σ

＊
)

]                                          (4)

where μ i
＊
 

＝－ε i  σu
2/σ2, σ

＊
2 ＝σu

2 σv
2/σ2, σ2＝σu

2 ＋σv
2 and φ (ㆍ) and Φ (ㆍ) 

are the standard normal density and cumulative distribution functions, 

respectively.
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It is obvious that ûi is not a consistent estimate of ui since we need 

to estimate N “parameters” based on N observations. In fact u ̂ i does not 

converge in probability to any limit, since the variability of vi remains 

no matter how large N is. To put this another way, var (ui|ε i )＞0 

independently of N. The expected value of u ̂i equals E (ui ) since  

E (u ̂i )＝E [E (ui|ε i )]＝E (ui) by the law of iterated expectations. However, 

uî is not unbiased in the conditional sense: E (u ̂i|ui )≠ui. Rather, as 

shown by Wang and Schmidt (2008), u ̂ i is a shrinkage toward the 

mean of u.

In fact, Jondrow, Lovell, Materov, and Schmidt showed that ui 

conditional on ε i is distributed as N＋(μ i
＊, σ

＊
2 ). Horrace and Schmidt 

(1996) showed how to construct confidence intervals for technical 

inefficiencies using this distribution.

IV. Models with Inefficiency That Depends on 

Explanatory Variables

In this Section, we consider stochastic frontier models in which 

observable characteristics of the firms affect their levels of technical 

inefficiency. As before, let y be log output, let x be a vector of functions 

(usually logs) of inputs, and u≥0 be the one-sided error reflecting 

technical inefficiency. Now we also specify a set of variables z that 

affect u. Generally the variables in z are either functions of inputs or 

measures of the environment in which the firm operates. Thus it is 

possible that x and z overlap. We can write u as u (z, δ ) to reflect its 

dependence on z and some parameters δ . Different models correspond 

to different specifications of u (z, δ ).

We will say that the model has the scaling property if 

u (z, δ )＝h(z, δ )․u＊ ,                        (5)

where h (z, δ )≥0, and where u＊≥0 has a distribution that does not 

depend on z. We will call h (z, δ ) the scaling function and u＊ the basic 

random variable. In models with the scaling property, changes in z 

change the scale but not the shape of u (z, δ ). The scaling property is 

discussed in more detail in Álvarez, Amsler, Orea, and Schmidt (2006).

A prominent example of a model that has the scaling property is the 

scaled half-normal model, or RSCFG model, of Reifschneider and 

Stevenson (1991), Caudill and Ford (1993) and Caudill, Ford, and 

Gropper (1995). In this model it is assumed that u is distributed as 
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N＋(0, σ (z, θ )2 ). This is equivalent to assuming that u is distributed as 

σ (z, θ ) times a variable distributed as N＋(0, 1). Thus σ (z, θ ) corres- 

ponds to the scaling function h (z, δ ) above. The various papers make 

different suggestions for the function σ (z, θ ). For example, Caudill, 

Ford, and Gropper specify σ (z, γ )＝exp(z’γ ).

A well known and popular model that does not have the scaling 

property is the KGMHLBC model of Kumbhakar, Ghosh, and McGuckin 

(1991), Huang and Liu (1994), and Battese and Coelli (1995). This is a 

truncated normal model in which the mean of the pre-truncation 

normal depends on z and some parameters θ. That is, u is distributed 

as N＋(μ (z, θ ), σ 2 ). Since the degree of truncation varies with μ, the 

shape of the distribution of u changes when z changes. All three of the 

papers listed above suggest a linear specification of μ : μ＝α＋z’δ . 

In the RSCFG model, the expectation of u is monotonic in z so long 

as the specification for σ is monotonic in z. Similarly, in the KGMHLBC 

model, the expectation of u is monotonic in z (though the relationship 

is complicated) so long as the specification of μ is monotonic in z. 

Wang (2002) proposes a model in which the relationship of the 

expectation of u to z could be non-monotonic. He does this by 

assuming that the distribution of u is N
＋(μ, σ2 ), where both μ and σ 

depend on z and some parameters. Specifically, he assumes that μ＝z’δ 

and σ2＝exp(z’γ ).

In Wang’s model the z each have two different coefficients, one for 

the mean and one for the variance. In the RSCFG model and the 

KGMHLBC model, the z each have only one coefficient. If one wishes to 

restrict attention to models in which each of the z has only one 

coefficient, scaling models may be attractive, primarily because the 

coefficients in the scaling function are easy to interpet. In particular, a 

reasonable competitor to the RSCFG and KGMHLBC models would be 

the scaled Stevenson model, which is simply the scaled version of the 

truncated normal model of Stevenson (1980). 

Once the error distribution is specified, the model is estimated by 

maximum likelihood. Wang and Schmidt (2002) refer to this as a one 

step procedure. This is different from a two step procedure in which 

the steps are: (i) Estimate a model ignoring the effect of z on u. (ii) Fit 

another model using z to explain the estimated inefficiencies û. Two 

step procedures are not recommended because, as Wang and Schmidt 

show, there are serious biases at each step.
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V. Panel Data Stochastic Frontier Models with 

Time-Invariant Inefficiency

Cross-sectional stochastic frontier models rely on two kinds of strong 

assumptions. Specific distributional assumptions need to be made for 

noise and for technical inefficiency; and the errors must be independent 

of the inputs. Even with these strong assumptions, the estimates of 

technical inefficiency are not consistent. Panel data allow us to relax 

some or all of these assumptions, and they allow consistent estimation 

of technical inefficiency. However, these advantages come at a price, 

because they depend on the additional assumption that technical 

inefficiency is time invariant, or that it varies in a restricted way over 

time. In this Section we consider the case that technical inefficiency is 

time invariant.

Pitt and Lee (1981) and Schmidt and Sickles (1984) were the first to 

consider stochastic frontier models with panel data. They considered 

the model with time invariant inefficiencies:

yit＝α0＋x’it β－ui＋vit,    i＝1, 2, …, N,  t＝1, 2, …, T      (6)

This equation can be converted to a standard panel data model:

yit＝x’itβ＋α i＋vit,    i＝1, 2, …, N,  t＝1, 2, …, T        (7)

where αi＝α0－ui. Note that α i≤α0 and α i＝α0 only when ui＝0. 

Therefore, a smaller individual-specific intercept implies a lower level of 

technical efficiency.

It is clear that TEi＝exp(－ui )＝exp(α i－α ) is an absolute efficiency 

measure, in the sense that it compares the firm’s efficiency to the 

absolute standard of TE＝1. We can also consider relative efficiency 

measures that compare the firm’s efficiency to that of the most efficient 

of the N firms in the sample. To define such measures, we write the 

intercepts in ranked order 

α (1 )≤α (2 )≤…≤α (N )≤α 0                     (8)

so that (N ) is the index of the best firm in the sample and its intercept 

is α (N ). We then write the technical inefficiency terms (the ui ) in reverse 

ranked order, so that
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0≤u(N )≤u(N－1)≤…≤u(1 )                     (9)

With these definitions it is the case that α (i)＝α 0－u(i). Now we can 

define the relative efficiency measures ui
＊＝ui－u(N )＝α (N )－α i≥0 and  

TEi
＊＝exp(－ui

＊)≤1. Note that ui
＊≤ui and TEi

＊≥TEi ; efficiency levels 

are higher when measured relative to the best of the N firms than 

when they are measured relative to the absolute standard of TE＝1.

A. Estimation with Distributional Assumptions

Pitt and Lee (1981) considered the model (7) under essentially the 

same assumptions as in the cross-sectional stochastic frontier model. 

This treatment of the model requires distributional assumptions for the 

two error terms: vi ~ iid N (0, σ v
2 ), ui ~ iid N＋(0, σ u

2 ) (or some other one- 

sided distribution), and u, v, and x are independent of each other. 

They derived the joint density function of ε it＝vit－ui for all t from the 

assumed densities of ui, vi1, …, vi T, and then estimated the model by 

MLE.

To estimate technical efficiency for a firm, Battese and Coelli (1988) 

suggested the following. The estimate of ui is u ̂i＝E (ui|ε i1, ε i 2, …, ε i T )＝

E(ui|ε i )＝E(ui|ε ̄ i ), where ε i＝(ε i1, ε i 2, …, ε i T )’ and ε ̄ i ̄＝1/T∑ε it. These 

are evaluated at the estimated values of the ε it and the estimated 

values of the other parameters. Similarly the estimate of TEi is  

TE ̂
i＝E [exp(－ui )|ε i1, ε i 2, …, ε i T ). The formula for u ̂i is the same as in 

equation (4), except that ε i and σ v
2 are replaced by ε ̄ i and σ v

2/T, 

respectively. Note that this estimate measures absolute efficiencies since 

we are measuring the distance of ûi from zero, not from u (N ). 

B. Fixed Effects Estimation

This estimation method considers equation (7) as the regression 

model. We treat the α i as fixed, so we do not need to impose any 

distributional assumptions. Also we allow correlation between technical 

inefficiency and the inputs. But we assume the strict exogeneity of the 

noise, in the sense that E [vit|xi1, xi 2, …, xi T )＝0.

This model can be estimated using the conventional “fixed effects” or 

“within” estimator. This can be defined in three different but equivalent 

ways. The first is ordinary least squares (OLS) on equation (7), treating 

the parameters as β , α 1, …, α N. The second is OLS with dummies for 

the N firms:
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y＝Xβ＋Dα＋v,   D＝IN⊗ 1T, α＝(α 1, …, α N )’          (10)

where 1T is a T ×1 vector of ones. The third is OLS after the within 

transformation:

(yit－ȳi )＝(xit－x̄i )’β＋(vit－v ̄i),  i＝1, 2, …, N,  t＝1, 2, …, T    (11)

where ȳi＝1/T∑
t yit and x̄i, v ̄i and are defined similarly.

The individual α i are estimated as the coefficients of the dummies  

in equation (10). Equivalently, α ̂i＝yī－x ī’β ̂ where β ̂ is the within 

estimator.

Note that the coefficients of time invariant regressors are not 

identified in this approach. They are linearly dependent with the 

individual dummies in equation (10), or equivalently they become zero 

after the within transformation. For example, the input “land” might be 

constant in panel data for farms, and then it cannot be included in the 

model. 

The estimator of the production function parameters (β ̂ ) is consistent 

and asymptotically normal as NT→∞(either N→∞ or T→∞). The 

estimator of the firm specific intercepts (α ̂i ) is consistent as T→∞. 

This condition is necessary for p lim v ̄i＝0 in the representation 

α ̂i＝α i－x ī’(β ̂－β )＋vī. This is somewhat unfortunate since the assumption 

that technical efficiency is time-invariant is less plausible when T is 

large.

Schmidt and Sickles (1984) suggested the following estimates of 

technical inefficiency, based on the within estimates:

α ̂
0＝max j α ̂j, u ̂i＝α ̂

0－α ̂i and TE ̂
i＝exp(－u ̂i )          (12)

If we think of N as fixed, these estimates are clearly estimates of 

relative technical inefficiency. That is, as T→∞ with N fixed, α ̂0 is a 

consistent estimator of α (N ), u ̂i is a consistent estimator of ui
＊, TE ̂

i and 

is a consistent estimator of TEi
＊. However, as N→∞ relative and 

absolute efficiencies should become the same. That is, as N→∞, 

u(N)→ p 0 so that α (N )→ p α0, ui
＊→p ui and TEi

＊ →p TEi. Thus we expect 

that, as both N→∞ and T→∞, the estimates in equation (12) should 

be consistent estimates of absolute efficiency. However, Park and Simar 

(1994) showed that consistent estimation of absolute efficiency requires 

N→∞ and T→∞, but also the additional condition that 1/√T lnN→ 0. 

Thus it is required that N grows slowly relative to T.



STOCHASTIC FRONTIER MODELS 15

It is important to realize that α ̂
0＝max j α ̂j is biased upward as an 

estimate of α (N )＝max j α j, for finite T. This is true because α ̂
0≥α ̂

(N) and 

E [α ̂(N )]＝α (N ), and basically reflects the fact that the largest α ̂i is more 

likely to contain positive estimation error than negative. This bias is 

larger when T is smaller, when N is larger, and when the variance of 

statistical noise is larger relative to the variance of technical inefficiency. 

It implies that in finite samples uî
＊ is biased upward as an estimate of 

ui
＊ and TEî

＊ is biased downward as an estimate of TEi
＊. Empirically, the 

fixed effects approach typically yields lower levels of estimated technical 

efficiency than the MLE approach.

VI. Panel Data Stochastic Frontier Models with 

    Time-Varying Efficiency 

The stochastic frontier production model with time-varying efficiency 

is defined by

yit＝α t＋xitβ＋vit－uit＝xitβ＋α it＋vit ,  i＝1, 2,…, N,  t＝1, 2,…, T  (13)

where α it＝α t－uit is the intercept for firm i in period t . Note that we 

allow a time-varying common intercept, α t. Clearly we cannot expect to 

estimate all of the uit (or α it ) without some assumptions about their 

temporal pattern or correlation structure. Therefore, different models 

have emerged as different choices for the form of α it (or, equivalently, 

uit ). 

Cornwell, Schmidt, and Sickles (1990, CSS) proposed the model in 

which α it＝Wt’δ i , where Wt is a vector of observed functions of time. 

They considered the specific case that α it was quadratic in t, so that  

Wt＝[1, t, t2] and α it＝δ i 0＋δ i1 t＋δ i2 t2. Thus, the intercept for each firm 

is quadratic in time, but the form of the quadratic varies over firms.

Kumbhakar (1990) and Battese and Coelli (1992, BC) suggested the 

model that uit＝θ t (η )ui. Here θ t (η ) depends on t and on some parameters 

η. It determines the temporal pattern of technical inefficiency. Specifi- 

cally, Kumbhakar set 

θ t (b, c )＝[1＋exp(bt＋ct2)]－1 and BC set θ t (η )＝exp[η (T－t )]. 

Lee and Schmidt (1993, LS) and Ahn, Lee, and Schmidt (2001) 

considered a model that is similar to the models of Kumbhakar and 
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BC, but more flexible. They set α it＝θ tα i, where the θ t are unrestricted 

parameters to be estimated. Thus the temporal pattern of technical 

inefficiency is completely unrestricted. This model nests the models of 

Kumbhakar (1990) and BC in which inefficiencies vary over time in 

specific exponential forms. Of course, there are more parameters to 

estimate, since η contains the T－1 parameters θ t for t＝2, …, T, with a 

normalization that θ1＝1.

The models of the previous two paragraphs imply that the temporal 

pattern of inefficiency is the same for each firm, though the magnitude 

varies with ui or α i. (This statement assumes that the α i are all of the 

same sign.) The CSS model does not have that property. Another model 

that does not have that property was proposed by Cuesta (2000), who 

assumed α it＝θ itα i where θ it＝exp[ηi (T－t )]. Now η i depends on i, 

whereas in the BC model it did not. Another model that does not have 

the property that the temporal pattern of technical inefficiency is the 

same for all firms is the group-specific model of Lee (2006, 2009). The 

firms are put into groups, such that all of the firms in a given group 

have the same temporal pattern of inefficiency, but this pattern differs 

across groups. Specifically, α it＝θgtα i where i∈group g. θgt can be 

treated as a parameter or alternatively a functional form such as 

θ gt＝exp[ηg (T－t )] can be imposed on θgt.

Ahn, Lee, and Schmidt (2007, ALS) applied a multi-factor model to 

the stochastic frontier model. This model was suggested as an 

extension to the single factor model of LS and Ahn, Lee, and Schmidt 

(2001). The multi-factor model specifies

α it＝θ1tδ1i＋θ2tδ2i＋…＋θptδpi＝∑p
j=1θ jt δ ji            (14)

Therefore, this model reduces to LS if the number of factors is one 

(p＝1). The model also nests CSS as the special case that p＝3 and 

θ1t＝1, θ2t＝t and θ3t＝t2. Therefore this model nests all of the 

specifications of BC, Kumbhakar (1990), CSS, and LS. 

We now turn to the estimation of the models. Kumbhakar (1990) 

and BC suggested random effects estimation in which a distributional 

assumption was made for ui. The same approach can be applied to all 

of the models in which there is a single ui (or α i ) per firm, that is, to 

all of the models listed above except the CSS model and the 

multifactor model. The estimates of the parameters of the model are 

consistent as N→∞ with T fixed. Intuitively, these models are similar 

in spirit to cross-sectional models and a large number of firms is 
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required to consistently estimate the parameters of the distribution of u. 

All of the models listed above can also be estimated by fixed effects. 

For those models where the number of parameters does not depend on 

T (i.e., for all of the above models except the factor models), the fixed 

effects estimates of the parameters of the model are clearly consistent 

as T→∞ with N fixed. Comparing this to the discussion of the previous 

paragraph, it is reasonable to argue that random effects models based 

on a distributional assumption are natural when N is large and T is 

small, whereas fixed effects estimates are natural when N is small and 

T is large. However, fixed effects estimates can also be used when N is 

large, where the motivation would be to avoid making a distributional 

assumption for inefficiency. In that case, there is a potential “incidental 

parameters problem” because the number of parameters increases with 

sample size (N). However, CSS show that there is no incidental 

parameters problem in their model. Han, Orea, and Schmidt (2005) 

provide a valid fixed effects treatment of models like the Kumbhakar 

(1990) and BC models. For factor models, the relevant asymptotic 

theory is provided in Ahn, Lee, and Schmidt (2001), Ahn, Lee, and 

Schmidt (2007), Bai and Ng (2002), and Bai (2003).

Once we have consistent estimates of the α it, estimated technical 

inefficiency is obtained in a manner similar to the case of fixed effects 

and time-invariant technical inefficiency. We define

α ̂t＝maxj α ̂jt , u ̂it＝α ̂t－α ̂it and TE ̂
it＝exp(－u ̂it ).           (15)

We can now make statements similar to those we made in the 

time-invariant case. Our estimates of relative technical inefficiency 

should be consistent as T→∞. Furthermore, as N→∞ relative and 

absolute technical inefficiency should become the same. Therefore, as 

both N→∞ and T→∞, we hope to obtain a consistent estimate of 

absolute technical inefficiency. However, there is no rigorous proof of 

this result (similar in spirit to Park and Simar 1994) currently 

available, and it is not known whether the additional condition needed 

in the time-invariant case (1/√T lnN→ 0) also applies here.

VII. Inference on Inefficiencies

So far in this paper we have discussed the estimation of technical 

inefficiency. That discussion is in terms of point estimates. Now we will 

discuss how to perform inference on inefficiency levels. Specifically we 
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will consider the construction of confidence intervals for u. We will 

discuss the cross-sectional case and the case of panel data with time- 

invariant technical inefficiency. The extension of this analysis to cases 

in which inefficiency depends on explanatory variables, or varies over 

time, is tedious but not conceptually difficult.

A. Inference with a Distributional Assumption

The simplest case to consider is the original cross-sectional 

stochastic frontier model in which the error is ε＝v－u where v is 

normal and u is half normal. In this case the point estimate of u is  

u ̂＝E (u|ε ), evaluated at ε＝ε ̂, as proposed by Jondrow, Lovell, Materov, 

and Schmidt (1982). However, Horrace and Schmidt (1996) observed 

that Jondrow, Lovell, Materov, and Schmidt had additionally shown 

that the distribution of u conditional on ε is N＋(μ＊, σ＊2 ) where and 

μ＊＝εσ u
2/(σ u

2＋σ v
2 ) and σ＊2＝σ u

2σ v
2/(σ u

2＋σ v
2 ). Therefore this distribution, 

evaluated at ε＝ε ̂, can be used to create confidence intervals for u. 

These should be accurate since the only approximation involved is the 

fact that we must evaluate the conditional distribution at estimated 

values (ε ̂, σ ̂u2, σ ̂v2 ). 

This procedure also extends to the case of panel data with time 

invariant inefficiency and a distributional assumption. One uses the 

distribution of u conditional on (ε1, …, εT ), which is also a truncated 

normal distribution, given by Battese and Coelli (1988).

B. Bayesian Inference

The Jondrow, Lovell, Materov, and Schmidt result has a Bayesian 

flavor to it. It treats the parameters of the model as known ( i.e., it 

treats the estimated parameters as if they were the true parameters) 

and conditions on ε, which would be equivalent to conditioning on the 

data (y and x ) if the parameters were known. A true Bayesian 

procedure would put a prior distribution on the parameters and on u  

( i.e., on each of the ui ) and would condition on the data. Bayesian 

analyses of the stochastic frontier model have been proposed and 

described in a series of papers, notably Koop, Steele, and Osiewalski 

(1995) and Koop, Osiewalski, and Steele (1997). 

Kim and Schmidt (2000) have compared Bayesian and classical 

analyses and found little difference in results, if the assumptions on u 

match up. For example, MLE applied to a model in which u is 

assumed to be exponential is not very different from a Bayesian 
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analysis with an exponential prior for u. As another example, Koop, 

Osiewalski, and Steele (1997) define a “Bayesian fixed effects model” in 

the setting of panel data, and this gives results that are similar to 

those from the fixed effects analysis discussed in Section 5.2 above.

There are some computational advantages to being a Bayesian, 

especially the availability of Markov Chain Monte Carlo sampling 

methods. There is no need for the numerical maximization of a 

likelihood function, as there is with classical MLE. From a classical 

point of view, specifying a prior for the parameters is troublesome, but 

for large samples the data should dominate the prior, and one can 

argue that these “asymptotics” (that the posterior depends little on the 

choice of prior) have the advantage of being visible.

C. Multiple Comparisons with the Best

Multiple comparisons with the best (MCB) is a statistical technique 

that yields confidence intervals for differences in parameter values 

between all populations and the best population. In the context of fixed 

effects estimation with panel data, Horrace and Schmidt (1996, 2000) 

have suggested its use to construct confidence intervals for the relative 

technical inefficiencies ui
＊＝ui－u(N)＝α (N )－α i , which are indeed differ- 

ences from the best.

As above, let firms be indexed by i＝1, 2, …, N and let (N ) be the 

index of the best firm. MCB constructs a set S of possibly best 

populations, and a set of intervals (Li , Ui ) such that 

P [(N )∈S and Li≤α (N )－α i≤Ui for all i ]≥1－c          (16)

where 1－c is a chosen confidence level (e.g., 0.95). Thus with a given 

confidence level we have a set of populations that includes the best, 

and joint confidence intervals for all differences from the best. MCB 

was developed by Hsu (1981, 1984) and Edwards and Hsu (1983). A 

general exposition can be found in Hochberg and Tamhane (1987), Hsu 

(1996) and Horrace and Schmidt (2000).

To perform MCB, we need an estimate of the vector (α1, …, αN )’ that 

is normally distributed, with a variance matrix that is known up to a 

constant (scale). In typical MCB applications to the efficiency measure- 

ment problem, the fixed effects estimates α ̂ i will be used. The normality 

of these estimates requires either that the errors vit are normal, or that 

T is big enough that a central limit theorem applies. However, because 
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this is a fixed-effects treatment, no assumption about the distribution 

of the ui is needed.

MCB produces confidence intervals that are quite conservative. That 

is, they are valid, in the sense that their coverage rate is indeed at 

least 1－c, but they are often very wide. 

D. Bootstrapping

We can use bootstrapping to construct confidence intervals for 

functions of the fixed effects estimates. The inefficiency measures uî
＊ 

are functions of the fixed effects estimates and so bootstrapping can be 

used for inference on these measures.

We begin with a very brief discussion of bootstrapping in the general 

setting in which we have a parameter θ , and there is an estimate θ ̂
based on a sample z1, …, zn of i.i.d. random variables. The estimator  

θ ̂ is assumed to be regular enough so that √n (θ ̂－θ ) is asymptotically 

normal. The following bootstrap procedure will be repeated many times, 

say for b＝1, …, B where B is large. For iteration b, construct pseudo 

data z1
(b), …, zn

(b) by sampling randomly with replacement from the 

original data z1 , …, zn . From the pseudo data, construct the estimate  

 θ ̂(b). The basic result of the bootstrap is that, under fairly general 

circumstances, the asymptotic ( large n) distribution of (√n (θ ̂(b)－θ ̂ ) 
conditional on the sample is the same as the (unconditional) 

asymptotic distribution of √n (θ ̂－θ ). Thus for large n the distribution 

of θ ̂ around the unknown θ  is the same as the bootstrap distribution 

of θ ̂̂(b) around θ ̂̂, which is revealed by a large number (B ) of draws.

We now consider the application of the bootstrap to the specific case 

of the fixed effects estimates. Our discussion follows Simar (1992). 

Let the fixed effects estimates be β ̂ and α ̂i, from which we calculate 

u ̂
i
＊ ( i＝1, …, N ). Let the residuals be v ̂it＝yit－α ̂i－xit’β ̂(i＝1,…, N, t＝1,…, T). 

The bootstrap samples will be drawn by resampling these residuals, 

because the vit are the quantities analogous to the z's in the previous 

paragraph, in the sense that they are assumed to be i.i.d., and the v ̂it 
are the observable versions of the vit. (The sample size n above 

corresponds to NT.) So, for bootstrap iteration b (＝1,…, B) we calculate 

the bootstrap sample v ̂it(b)
 and the pseudo data yit

(b)＝α ̂i＋xit’β ̂＋v ̂it(b). 

From these data we get the bootstrap estimates β ̂(b) , α ̂
i
(b) and u ̂

i
＊(b), 

and the bootstrap distribution of these estimates is used to make 

inferences about the parameters. 

We note that the estimates u ̂
i depend on the quantity max j α ̂j. Since 
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“max” is not a smooth function, it is not immediately apparent that 

this quantity is asymptotically normal, and if it were not the validity  

of the bootstrap would be in doubt. A rigorous proof of the validity of 

the bootstrap for this problem is given by Hall, Härdle, and Simar 

(1995). They prove the equivalence of the following three statements: 

(i) max j α ̂j is asymptotically normal. (ii) The bootstrap is valid as T→∞ 

with N fixed. (iii) There are no ties for max j α j, that is, there is a 

unique index i such that α i＝max j α j. There are two important 

implications of this result. First, the bootstrap will not be reliable 

unless T is large. Second, this is especially true if there are near ties 

for max j α j, in other words, when there is substantial uncertainty 

about which firm is best.

We wish to use the bootstrap to construct a confidence interval for  

ui
＊. That is, for a given confidence level c, we seek lower and upper 

bounds Li , Ui , such that P [Li≤ui
＊≤Ui ]＝1－c. The simplest version of 

the bootstrap for the construction of confidence intervals is the 

percentile bootstrap. Here we simply take Li and Ui to be the upper 

and lower c/2 fractiles of the bootstrap distribution of the uî
＊(b). 

The percentile bootstrap intervals are accurate for large T but may 

be inaccurate for small to moderate T. This is a general statement, but 

in the present context there is a specific reason to be worried, which is 

the finite sample upward bias in max j α ̂j as an estimate of max j α j. 

This will be reflected in incorrect centering of the interval and poor 

coverage. Simar and Wilson (1998) develop a bias corrected percentile 

bootstrap, as follows. As above, let θ ̂ be the original estimate and θ ̂ (b)  

be the bth bootstrap estimate. Define estimated bias＝θ ̂̄
 

boot－θ ̂ where  

θ ̂̄
 

boot is the average of the B bootstrap estimates. Now define the bias 

corrected bootstrap values θ ͂(b)＝θ ̂ (b)－2(estimated bias) and apply the 

percentile bootstrap using the bias corrected bootstrap values θ ͂(b). Note 

that estimated bias is subtracted twice, once to get the bootstrap 

values to center on the original estimates, and a second time to get 

them to center on the true θ . 

Simulation evidence in Kim, Kim, and Schmidt (2007) indicates that 

the bias corrected percentile bootstrap is the best currently available 

method for constructing confidence intervals for inefficiency levels 

without making a distributional assumption.
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VIII. Concluding Remarks and Comments on Likely 

Future Developments

The original stochastic frontier model of 1977 was a fully parametric 

model. It assumed a specific functional form for the deterministic portion 

of the frontier, and it assumed specific distributions for noise and for 

technical inefficiency. This model has been extended in a large number 

of directions: alternative distributional assumptions, other types of 

frontiers (cost functions, distance functions, …), systems of equations, 

panel data, allowance for exogenous determinants of inefficiency, etc. 

No doubt such extensions and elaborations of the model will continue. 

However, it is probably fair to say that, as long as the model is fully 

parametric, the issues of how to estimate technical inefficiency and 

how to perform inference about it have basically been solved. Now the 

more interesting developments are likely to involve attempts to weaken 

the assumptions that need to be made.

One of the main arguments in favor of data envelopment analysis 

(DEA) and free disposal hull (FDH) methods in efficiency analysis is 

that they do not require a parametric specification of the frontier. 

Recent work on the stochastic frontier model similarly has aimed to 

not require a parametric specification of the deterministic part of the 

frontier (the regression function). Of course we can always estimate a 

regression consistently by purely nonparametric methods like kernels 

or nearest neighbors, but there ought to be advantages of imposing the 

restrictions that economic theory dictates. There has been a little work 

by econometricians on nonparametric methods with shape restrictions 

(e.g., Tripathi 2000; Tripathi and Kim 2003). More recently there has 

been work that has more aggressively linked stochastic frontier models 

to DEA and FDH, notably Kuosmanen (2006, 2008). He estimates 

stochastic frontier models subject only to constraints like free disposa- 

bility and convexity, and shows that the results have piecewise linear 

forms analogous to DEA. This is interesting and valuable work. We 

predict that in the foreseeable future the methodology will exist for 

routine application of the stochastic frontier model without a parametric 

specification of the frontier.

Avoiding distributional assumptions for noise and inefficiency is a 

more challenging task. The fixed effects panel data model does this 

successfully, but at some costs, such as the need for a large number 

of time series observations per firm, and the assumption that inefficiency 

is time invariant (or changes in a restricted way over time). Even then, 
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the problem of inference on the inefficiencies has not been solved very 

successfully. More sophisticated statistical analysis (improved bootstraps, 

the jackknife, etc.) will likely improve the situation, but the fixed effects 

model is probably not the long term future of the field.

If we take a random effects perspective, then there is a fundamental 

identification problem in that the most we can “observe” is ε＝v－u, 

whereas fundamentally we are interested in u. This is the so-called 

“deconvolution problem” and it can never be solved without some fairly 

strong assumptions. As a trivial example, if v and u are both normal, 

they are not separately identified. Of course normal u are ruled out in 

the present context, but nothing prevents u from being almost normal 

(e.g., N
＋(3,1)). The assumption that v is normal does not seem to 

bother people, so that is a reasonable starting point, and if that 

assumption is made it is interesting to ask what kinds of regularity 

have to be assumed on u for its distribution to be identified and, more 

importantly, for individual values of u to be estimable and inference 

about them to be possible. This strikes us as the most difficult and yet 

most promising task for future work.

An alternative strategy is to continue to use parametric models but 

to find good ways to test their assumptions. Two of the authors of this 

paper are working on goodness of fit tests, for example (Wang, Amsler, 

and Schmidt 2008), something that seems long overdue. 

(Received 17 November 2008; Revised 28 January 2009)
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