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I. Introduction

A. Motivation  

The greatest revolution triggered by the widespread use of smartphones 

is that “sharing,” “recommending,” and “doing activities with friends” 

have become extremely easy via social networking services (SNS). This 

“sharing” function allows individuals to appreciate, work on, and evaluate 

their content with others by simply clicking a “share” button. This con- 

venient function is rapidly transforming conventional content and indu- 

stries. This trend is mostly aimed to generate direct network externalities.

A real-life transition resulting from the widespread use of smartphones 

is demonstrated in the way people play games. Before the mobile era, 

games were frequently played by only one player or with a few others. 

However, mobile games based on SNS platforms allow users to enjoy 

the games with their friends or acquaintances whose contacts are in 

their mobile phones. Players are no longer limited by time and space 

because they can play a game with anyone at any time through the 

SNS platforms that the game is based on. For example, Facebook, the 

social network giant with 1.3 billion users, provides a game platform in 

which users can complete missions and compare scores with their 

Facebook friends. Line and Kakao, which are mobile messenger apps 

with 600 million and 140 million users, respectively, also provide plat- 

forms for mobile games. Users can now enjoy playing games with 

friends on their list and even receive invitations from their friends to 

keep on playing. Thus, users invite more friends to play games, which 

significantly contributes to the rapid popularization of mobile games.

Another influence of the “sharing” function is demonstrated in the 

change in the consumption patterns of printed content, such as news- 

paper and books. Social networks, such as Facebook and Twitter, show 

articles that the friends of their users have read, recommend topics that 

users may be interested in based on the articles that their friends are 

reading, and display these articles on the top of their list. Amazon pro- 

vides a review service to buyers. Buyers are encouraged to recommend 

good books and leave reviews for those books, which urge users to 

purchase books frequently. All these functions are intended to generate 

direct network effect.

The increasing use of content recommendation services based on the 

consumption pattern of users’ friends has become notable in e- 

commerce. The movie review website “Watcha” distinguishes itself from 
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other movie review websites by offering a sharing function. Users share 

their reviews with their Facebook friends, and this practice encourages 

users to share their movie experiences. Airbnb, the largest website in 

the world for people who rent out accommodations, provides a sharing 

function through Facebook or Google accounts. Users can share infor- 

mation about the accommodation facilities where they have stayed to 

help their friends or acquaintances find good accommodations. This 

website also provides a “review” from other users, which can generate 

accurate information as the number of users increases. Thus, these 

trends of “sharing” or “recommending” allow the identification of “good” 

products or contents, thereby leading to their frequent consumption. 

These trends are certainly driven by the widespread use of smartphones. 

If web-centric software platforms were “likely to produce changes that 

dwarf the revolution we have seen in the last quarter century (Evans, 

Hagiu, and Schmalensee (2006))”, then this phrase definitely applies to 

“smartphone-centric” platforms at present.

Services that prompt users to frequently “share,” “recommend,” “invite,” 

or “do activities” with friends or other users have a two-sided structure. 

For example, social networks, such as Facebook, Line, and Kakao, provide 

platforms where users can access, download, and play games with 

friends (or other users of that service). The games provided through these 

websites are originally produced by mobile game developers. That is, three 

parties are involved: content users (game players), platforms (Facebook, 

Line, and Kakao), and content developers (game developers). Amazon also 

functions as a platform. The company mediates between publishers and 

consumers. Facebook and Twitter do not publish news articles them- 

selves. They simply provide platforms where news articles can be posted, 

and then encourage users to read articles that their friends (or other 

users) are reading. Airbnb is also a two-sided market because it offers an 

open platform for users who want to provide and find places for lodging. 

Thus, the development of mobile technology primarily changes the 

structure of the two-sided market. Although conventional two-sided plat- 

form markets were characterized by the cross-network effect among dif- 

ferent groups (or end users), incorporating direct network effect within a 

group (or within-network effect) is necessary. Despite the ubiquitous 

existence of this type of market structure, limited work has been con- 

ducted to examine its effect on the business strategies of platforms. A 

number of questions naturally emerge. Should platforms subsidize a 

group with direct network effect to attract more buyers, or should they 

penalize the group and extract additional surplus generated by direct 
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network effect? This problem is not trivial because of the two-sided 

market structure. Any change in price charged to the group with a 

direct network effect will exert an indirect effect on the demand of the 

other group. Thus, the optimal price charged to the other group changes, 

which in turn affects the price charged to the former group. The answer 

depends on the competitive nature of a market.

Another important feature is that competition between platforms is 

becoming prevalent. Facebook and Twitter are not only vying to be the 

leading SNS in the world, but their contents and annexed services are 

competing as well. Mobile messenger services, such as Line and Kakao, 

are aggressively competing for mobile game platform services. Thus, 

analyzing platform competition in the presence of both direct and cross- 

network externalities is necessary.

To contribute to the recent two-sided platform market literature, this 

work seeks to answer the following questions: (1) What is the optimal 

pricing strategy of monopoly/duopoly platform(s) where one side of a 

group enjoys direct network effect? (2) Compared with the case where no 

direct network effect exists, which side enjoys discount (or conversely, 

which side is penalized) by introducing such effect? Does the competiti- 

veness of a market affect the result? (3) How does the magnitude of 

direct network effect affect the pricing strategy of platforms? This study 

determines that competition among platforms may induce them to re- 

duce the price charged to the group with direct network effect, and this 

trend is reinforced as the magnitude of direct network effect increases.

Accordingly, direct network effect is introduced in a rather conventional 

two-sided market. Each end user group is denoted as “buyers” and 

“sellers” or “buyer-side” and “seller-side” in some cases, and direct network 

effect is assumed to exist only in the buyer-side. Buyers in mobile game 

platforms can be regarded as game players, whereas sellers represent 

game developers. In SNS platforms, such as Facebook or Twitter, buyers 

are SNS users and sellers are content providers.

Introducing direct network effect into a two-sided market generates 

two counteracting effects on the pricing decision of a platform. On the 

one hand, it directly increases marginal utility on the buyer-side, thereby 

encouraging potential buyers who have previously not joined the 

platform to join it. This effect (called demand-augmenting effect) allows 

the platform to increase the price charged to buyers. On the other 

hand, an increase in buyer-side price will dramatically reduce buyer-side 

demand for the platform compared with the case without direct network 

effect because the decrease in demand will be exacerbated by direct 
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network effect. A reduction in demand implies a dwindling direct network 

effect, which indicates lower marginal utility for a given buyer-side 

price. This effect (called demand-sensitizing effect) provides incentive 

for a platform to lower buyer-side price because reducing price will attract 

more buyers, which in turn will enhance direct network effect. Increased 

marginal utility, which Is generated by direct network effect, will attract 

more buyers. This study shows that competition among platforms re- 

latively amplifies demand-sensitizing effect because competition restricts 

demand-augmenting effect by causing competing platforms to split total 

demand, whereas demand for one platform will be more sensitive to price 

increase because of the presence of its competitor. Demand-augmenting 

effect dominates under a monopoly platform, whereas demand-sensitizing 

effect prevails under a duopoly framework. If demand-sensitizing effect 

dominates, then each platform discounts buyer-side price and raises 

seller-side price. In this case, the sum of prices that is charged to buyers 

and sellers decreases. This scenario is consistent with the pricing con- 

vention of platforms under a competitive environment. These real-world 

platforms typically charge low fees (or even allow free usage of platform 

services) to customers and charge high fees to content providers. Fur- 

thermore, this scenario has particular implications for the antitrust 

policy. Although buyer-side prices charged by competing platforms appear 

“too” low, these prices may simply reflect a strong direct network effect 

and not anticompetitive predatory pricing or dumping.

The remaining parts of this paper are organized as follows. The pricing 

decisions of a monopoly platform are analyzed in Section II. In Section 

III, the competition between two platforms is modeled à la Hotelling. 

Comparative statistics are provided in Section IV. I conclude in Section 

V.

B. Related Literature

The current work is closely related to several strands of existing 

research. The first strand is related to general price theory on two-sided 

platform markets (mostly focusing on monopoly platform). The second 

strand focuses on the competition issue in two-sided markets. Third, 

this work is related to literature analyzing direct network externalities 

(Katz, and Shapiro 1985; Liebowitz, and Margolis 1994). Finally, this 

paper is in line with literature on oligopoly market focusing on inter- 

action among competing firms (Bulow et al., 1985; Ryu, and Kim 2011).

The pioneering works of Rochet, and Tirole (2003, 2006) and Armstrong 
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(2006) describe price theory on two-sided platforms in the absence of 

direct network effect. In Rochet, and Tirole (2003), total price, which is 

defined as the sum of prices imposed to each side, is given by Lerner’s 

formula, and the price structure (i.e., prices imposed to each side) is 

provided by the ratio of the demand elasticity of each side. Although 

the prices considered by Rochet, and Tirole (2003) are a per- 

transaction-based “usage fee,” they incorporate interaction-independent 

fixed fees called “membership charges” into the model.    

Weyl (2010) develops a general theory on pricing decision for a multi- 

sided platform market. He shows how a monopoly platform sets prices 

in a multi-sided market, where agents have a general form of utility 

that subsumes those considered in Rochet, and Tirole (2003, 2006) and 

Armstrong (2006). The general utility considered in his model subsumes 

the possible existence of both direct and cross-network effects. He 

transforms the problems of monopoly platforms from price selection to 

desired allocations by introducing insulating tariffs to avoid coordination 

failure. Weyl demonstrates that even in this general framework, the 

profit-maximizing allocations and prices of monopolists cause classical 

market power distortion; however, distortion is generated by only inter- 

nalizing network externalities to marginal users (Spence 1975). However, 

he focuses on providing a general theory and not specifically on direct 

network effect. Thus, Weyl does not explicitly investigate how the intro- 

duction of direct network effect changes the pricing decisions of plat- 

forms compared with the case where no effect occurs. He also does not 

consider competition among multiple platforms, which is more consis- 

tent with real-world platform markets. 

Modeling competition between two platforms is a difficult task given 

the nature of two-sidedness. Rochet, and Tirole (2003) note that many 

merchants accept both Amex and Visa cards, and some buyers use 

both cards. This possibility of multi-homing either sides of end users 

complicates the illustration of competition among multiple platforms. 

Rochet, and Tirole (2003) address this issue by constructing a formal 

model that captures the nature of competing platforms. Suppose that 

one platform offers a lower price to sellers than its rival. Each seller 

must choose whether to join the cheaper platform or both platforms. A 

trade-off occurs because if the seller joins both platforms, he/she can 

transact with a larger subset of buyers. However, less buyers use the 

platform that offers a cheaper price to the seller compared with the 

case where the seller only joins the cheaper platform. Each competing 

platform can encourage sellers to stop multi-homing and join only its 
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platform, which is called “steering,” by undercutting the rival platform. 

In the current study, homogeneous products are assumed to avoid multi- 

homing issue because this work aims to clarify the direct effect on the 

pricing decision of platforms in the presence of direct network effect. 

Incorporating multi-homing issue is a potential future research topic.

Caillaud, and Jullien (2003) analyze the intermediation market by 

focusing on cross-network externalities, non-exclusivity of services, and 

price discrimination, which are relevant for informational intermediation 

via the Internet. They formulate the problem as an imperfect competition 

between two matchmakers in the presence of cross-network externalities 

where matched end users bargain to determine how the total net trade 

surplus is split. They show that an equilibrium with efficient market 

structure exists, and that the efficient structure may involve a mono- 

polistic intermediary or duopolistic intermediaries with non-exclusive tech- 

nologies and low costs. They also demonstrate the possible existence of 

an inefficient equilibrium that involves multi-homing on one side and 

single-homing on the other side.

Although the model of Rochet, and Tirole (2003) has direct implications 

on the payment card industry where fees are charged on a per-transaction 

basis, Armstrong (2006) models the competition among platforms that 

charge lump-sum fees. His models are applicable to markets such as 

shopping malls or newspapers. Armstrong provides three models for 

two-sided markets: (1) a monopoly platform model, (2) a model for 

competing platforms where agents join a single platform, and (3) a model 

for competing platforms where one side of agents join all platforms 

(called “competitive bottlenecks”). He shows that each platform in the 

competitive bottleneck model where sellers multi-home only considers 

the joint surplus of the platform and its buyers and disregards the 

interests of sellers. Thus, each platform encourages few sellers to join 

unlike that in the social optimum. 

The research question of Parker, and van Alstyne (2005) may be the 

closest to that in the current work. They analyze two-sidedness, which 

focuses on information products, and theoretically demonstrate the 

condition where a free-goods market (e.g., streaming media companies 

provide consumers with free software players but charge developers to 

create content) may exist. Parker and van Alstyne determine which side 

of a two-sided market obtains a discount. They show that if the increment 

to profit for one complementary good exceeds the lost in profit for the 

other good, then a discount or subsidy becomes profit maximizing. Thus, 

free-goods markets can exist whenever the profit-maximizing price of 
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zero or less generates cross-network externality benefits that are greater 

than intramarket losses. However, their work focuses on cross-network 

effect and disregards direct network effect within a group, which is 

prevalent in the information product market. 

White, and Weyl (2012) propose a novel solution concept of residual 

insulated equilibrium for platform competition. This new solution concept 

resolves the “indeterminancy problem” that frequently emerges in the 

analysis of competition among platforms. They generalize the model to 

accommodate direct network effect. Thus, the work is clearly related to 

the current study. However, White and Weyl focus on proposing a new 

solution concept and resolving equilibrium indeterminancy and have 

not thoroughly investigated the effect of introducing direct network effect. 

By contrast, the current work compares platform competition with and 

without direct network effect, thereby focusing on equilibrium prices 

between the two cases. The current work adopts the framework of Rochet, 

and Tirole (2003) because it compares the prices between the two cases 

and provides comparative statistics.

II. Monopoly Platform

A. Basic Framework

Platforms that utilize smart technology, particularly platforms based 

on SNS, mostly charge fees on a per-transaction basis and benefit from 

usage.1 The present study does not consider membership charge, which 

is considered in Rochet, and Tirole (2006) nor membership benefit, 

which is considered in Weyl (2010). A model is developed based on the 

work of Rochet, and Tirole (2003) because its structure can subsume 

the substantial realistic features of mobile content platforms. Unlike 

that of Rochet, and Tirole (2003), this work considers cross-network 

effect generated between buyers and sellers as well as direct network 

effect among buyers. A monopoly platform that mediates transactions 

between pairs of end users with buyers (superscript B) and sellers 

(superscript S) is provided as an example. Let the platform’s marginal 

1 For example, platforms for mobile games charge fees on a per-transaction 

basis. If a game user buys an “item” in the game, a fraction of the item price is 

transferred to the platform. “Emoticons” or “stickers” can be purchased by users 

of messenger services. Fees are charged per-transaction (i.e., whenever a mes- 

senger user buys a package of “emoticons” designed by a designer, fees are 

charged by the intermediating platform). Thus, platforms benefit from usage.
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FIGURE 1

BUYER-SIDE DEMAND FOR EACH p
B

cost of transaction be given by c＞0. In the absence of fixed usage costs 

and fixed fees, the demand of the buyer-side (seller-side) depends on 

price pB (pS) imposed by the monopoly platform. 

The monopoly platform chooses prices to maximize its profit. The 

pricing decision of the platform clearly depends on the demands of the 

buyer-side and seller-side for the platform (which will be formally 

defined in a later section), and the demand for the platform of each 

group is determined by thegross surplus of a group. Suppose that the 

gross per transaction surplus of a buyer is given by 

b̃
B≡bB＋v(D1

B
(pB)),                       (1)

where b
B is a random variable that is uniformly distributed at an 

interval of [0, b̅B], D1
B (pB) denotes the buyer-side demand, and v(‧) is a 

direct network externality function adapted from Katz, and Shapiro 

(1985). Assume that v(0)＝0, v’(z)＞0, and v”(z)≤0 for all z∈[0, 1]. 

Assume also that b̅
B＞v’(0). (v’(D1

B))/b̅B is the marginal benefit from the 

unit increase of demand. The assumption guarantees that the marginal 

benefit from the unit increase of demand is always less than one. This 

assumption effectively defines and stabilizes the demand function by 

bounding the size of direct network externalities.

Figure 1 illustrates how buyer-side demand D1
B

(pB) is defined and 

compares it with hypothetical demand D0
B
 without direct network effect. 
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FIGURE 2

BUYER-SIDE DEMAND

The latter is defined as D0
B (pB)≡Pr[bB≥pB]＝1－(pB/b̅B). If pB≥b̅B, then 

D1
B (pB)≡0. This condition corresponds to point A in Figure 1. Let p̲B be 

the highest price that achieves D1
B (p̲B)＝1. If pB≤p̲B, then D1

B (pB)≡1 is 

defined as the upper bound of the number of buyers, which is one. 

This value corresponds to point C. If p
B∈[p̲B, b̅B], then D1

B
(pB)≡NB∈(0,

1] is uniquely determined as a fixed point of NB＝Pr[bB＋v(NB)≥pB](＝1－

(p
B－v(NB))/b̅B) or equivalently 

b̅B NB＝b̅B－pB＋v(NB).                       (2)

Figure 2 shows the corresponding demand curve where A’, B’, and C’ 
correspond to A, B, and C in Figure 1, respectively.

The monopolist platform will not choose p
B＜p̲B. Thus, pB≥p̲B is 

assumed. The buyer-side demand exhibits the following properties:

Remark 1.

(i) Downward sloping: 

     dD1
B
       1                                  ∂D1

B

          ＝          ＜0 for all pB≤b̅B; otherwise,      ＝0.
     dpB   b̅B－v’(D1

B
)                              ∂pB
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(ii) Concavity: 

                     dD1
B

             v”(D1
B
)‧                                   

    d2 D1
B            

dpB                               d2 D1
B

         ＝－             ≤0 for all pB≤b̅B; otherwise,       ＝0.2 
     dp

B2     {b̅B－v’(D1
B
)}2                               dpB2

This condition indicates the concavity of log D1
B
.

Direct network effect among sellers is not considered. Thus, the gross 

per transaction surplus is given by b
S, which is assumed to be uni- 

formly distributed on [0, b̅S] and independent from bB. If pS＜b̅S, then 

the demand function of the seller is defined as

                                        p
S   

DS (pS)≡Pr[bS≥pS]＝1－    ∈(0, 1].                 (3)
                                       b̅S

If pS≥b̅S, then DS (pS)≡0.

This demand specification for each group, which is based on the 

work of Rochet, and Tirole (2003), has several advantages. In addition 

to its simplicity, this approach makes the decision of each side in- 

dependent from the demand level of the other side. This condition does 

not indicate that cross-network effect does not exist between two groups. 

The net per transaction surpluses on each side are defined as V
B (pB)≡

∫pB
b̅B

D1
B

(t)dt and VS (pS)≡∫pS
b̅S

DS (t)dt. By assuming that bB and bS are 

independent, which is consistent with with the work of Rochet, and 

Tirole (2003), the average net surplus on each side is given by 

W
B (pB, pS)≡VB (pB)‧DS (pS),                        (4)

WS (pS, pB)≡VS (pS)‧D1
B

(pB).                        (5)

As the demand on one side (e.g., seller-side) increases, the other side 

(e.g., buyer-side) will have more opportunities to transact, which increases 

the average net surplus of the latter side (buyer-side). This condition 

captures cross-network effect among end users. However, in the demand 

specification from Rochet, and Tirole (2003), the decision of each end 

user becomes independent from the level of the other side’s demand, 

whereas the monopoly platform considers cross-network effect in deciding 

2 If v”(z)＜0 ∀z∈[0, 1], then the inequality becomes strict.
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price. The current work focuses on how network externalities (both 

direct and cross) affect the pricing decision of a platform. Thus, this 

demand specification appears sufficient to capture the concepts to be 

analyzed in this study.

B. Pricing Decision

By assuming that bB and bS are independent, the probability that the 

monopoly platform (charging pB, pS to each side) successfully mediates 

the transaction between the two groups is given by D1
B (pB) × DS (pS)∈[0, 

1]. Per-transaction profit is given by (p
B＋pS－c). Thus, the monopoly 

platform chooses prices to maximize the total profit as follows: 

π＝(pB＋pS－c)D1
B

(pB)DS (pS).

D1
B
 and DS are log concave.3 Thus, this maximization problem is 

characterized by the first order conditions (FOCs), i.e., 

            ∂(log π )       1        1    dDB (pB)
        ＝          ＋                ＝0,

              ∂pB    pB＋pS－c   DB (pB)   (dpB)

             ∂(log π )      1         1   dDS (pS)
       ＝          ＋                ＝0.

              ∂p
S   (pB＋pS－c)  DS (pS)   (dpS)

Marginal cost c is sufficiently small. Thus, the monopoly platform 

never chooses p
B≥b̅B or pS≥b̅S. The FOCs are written as 

p
B＋pS－c＝D1

B (pB)[b̅B－v’(D1
B (pB))],                 (6)

pB＋pS－c＝b̅S－pS.                         (7)

Prices p
B and pS, which solve Equations (6) and (7), characterize the 

optimal pricing decision of the monopoly platform, which are denoted 

as p̂
B and p̂S.

By defining the elasticity of buyer-side demand D1
B
 as 

           p
B  dD1

B         
pB

ε1
B

(pB)≡－         ＝              
          D1

B  dpB   D1
B [b̅B－v’(D1

B)]

3 See Remark 1 (ii).
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and that of sellers as 

        pS  dDS     pS

εS (pS)≡－         ＝       , 
          DS  dpS    b̅S－pS

we obtain a generalized result of Proposition 1 from Rochet, and Tirole 

(2003) under direct network effect among buyers. Equations (6) and (7) 

can be written as 

p
B＋pS－c＝pB/ε1

B
(pB),

p
B＋pS－c＝pB/εS (pS).

For notational simplicity, denote ε ̂1B≡ε1
B

(b̂B) and ε ̂S≡εS (p̂S). Assume 

that the total volume elasticity in the equilibrium ε ̂1≡ε ̂1B＋ε ̂S exceeds 

one. Then, the following proposition is obtained.

Proposition 1.

(i) The total price of the monopoly platform p̂≡p̂
B＋p̂S is given by the 

standard Lerner formula for the total volume elasticity as follows: 

                             (p̂－c)  1
      ＝   .                           (8)

                               p̂     ε ̂1
(ii) The price structure is given by the ratio of elasticities as follows: 

                              p̂B    p̂S

    ＝    .                            (9)
                             ε ̂1B    ε ̂S

The closed form equilibrium prices are provided in Appendix 1. The 

characterization of the equilibrium prices is described in detail in the 

next subsection.

C. With Direct Network Effect versus Without Direct Network Effect

This study focuses on the effect of introducing direct network exter- 

nalities on the optimal behavior of platforms. Following the convention 

of Parker, and van Alstyne (2005), the optimal prices under both net- 

work effects are compared only with those with cross-network effect. 

The two countering pressures on buyer-side price caused by direct net- 

work effect will be demonstrated by comparing the equilibrium prices of 
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the two cases. This pressure on buyer-side price transmits to seller-side 

price in the opposite direction because of cross-network effect.

The equilibrium prices of the benchmark case (i.e., without direct 

network effect) are derived by assuming v(z)≡0, ∀z∈[0, 1]. 

      1                     1                    1
p̃B＝  [2b̅B－b̅S＋c],    p̃S＝  [2b̅S－b̅B＋c],    p̃＝  [b̅B＋b̅S＋c].  (10)

      3                     3                    3

The elasticity of the buyer-side demand in the benchmark case is 

defined as 

           p
B  dD0

B     
pB

ε0
B

(pB)≡－         ＝       ; 
          D0

B  
dpB   b̅B－pB

and ε0
B

(p̃B), ε1
B  

(p̃B), εS (p̃S) are denoted as ε ̃0B, ε ̃1B, ε ̃S, respectively.

In the case where both direct and cross-network effects occur, equi- 

librium prices p̂B and p̂S are characterized by Proposition 1. The fol- 

lowing theorem indicates who enjoys a discount and who is penalized 

by introducing direct network effect and compares these conditions 

with the case where this effect does not exist in a monopolistic two- 

sided platform market. ε ̃0B, ε ̃1B, and ε ̃S are the elasticities evaluated at 

benchmark equilibrium prices p̃B and p̃S, whereas ε ̂1B and ε ̂S are those 

evaluated at the equilibrium prices when both direct and cross-network 

effects p̂
B and p̂S occur. Define p≡pB＋pS.

Theorem 1. 

Solutions p̂
B and p̂S can be used to solve Equations (8) and (9). 

Moreover, p̂B≥p̃B, p̂S≤p̃S, and p̂≥p̃ hold, where equalities are satisfied if 

and only if 

v(D1
B (p̃B))

         ＝v’(D1
B (p̃B)). 

 D1
B

(p̃B)

Proof. The existence and uniqueness of the solution are demonstrated 

in an alternative proof provided in Appendix 2. This proof shares a 

symmetric logic to that of Theorem 2 (duopoly case). Thus, the logic of 

the proof of Theorem 2, which may be complicated because of the 

extensive calculation, is clarified.

A simpler version, which exploits the closed form equilibrium prices 
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FIGURE 3

BUYER-SIDE DEMAND

provided in Appendix 1, is provided given the existence and the uni- 

queness of the solution. Assume p̂B＜p̃B. Thus, 

 

                 1               2
p̂

B＝   {2b̅B－b̅S＋c}＋   {v(D̂1
B)－D̂1

B‧v’(D̂1
B)}

                 3               3

                     2
              ＝p̃B＋   {v(D̂1

B
)－D̂1

B
‧v’(D̂1

B
)}

                     3

              ＜p̃B.

However, (v(D̂1
B
))/(D̂1

B
)≥v’(D̂1

B
) holds based on Jensen’s inequality, 

which is contradicting. Thus, p̂B≥p̃B holds. 

p̂S≤p̃S and p̂≥p̃ can be similarly shown.                          □

In the alternative proof provided in Appendix 2, ε ̃̃1B＜ε ̃̃0B always holds 

in a monopoly platform case. The reason why buyer-side elasticity 

decreases for given price p̃B is graphically illustrated in Figure 3. For 

given price p̃B, the elasticity of D0
B at point a is ε ̃̃0B. The elasticity of D1

B 

at point c is ε ̃̃1B. A linear demand curve connects (b̅B be). The elasticity 

of (b̅B be) at b is equal to that of D0
B
 evaluated at a. Thus, the following 

holds: 
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FIGURE 4

 DEMAND-AUGMENTING EFFECT VS. DEMAND-SENSITIZING EFFECT

             (p̃B, 0)   (p̃B, 0)
ε ̃̃0B＝ε (

B

b̅B be)＝       ＞       ＝ε ̃̃1B, 
            (b̅B, p̃B)   (d, p̃B)

where (m, n) denotes the length of the line that connects points m and 

n. Parker, and van Alstyne (2005) also point out that network effect 

makes demand more inelastic as the “size” of the demand increases, 

although the increase in size stemmed from cross-network effect in 

their context.

Note that ε ̃̃1B＜ε ̃̃0B can be rewritten as 

 D1
B

(p̃B)   dD1
B

(p̃B)/dpB

        ＞              . 
 D0

B
(p̃B)   dD0

B
(p̃B)/dpB

In the alternative proof in Appendix 2, D1
B

(p̃B)＞D0
B

(p̃B) and b̅B－v’(D1
B

(p̃B))
＜b̅

B always hold, and the second inequality can be written as 

   dD1
B
(p̃B)      dD0

1
(p̃B)

(－        )＞(－        ). 
     dpB          dpB

Thus, direct network effect introduces two effects. For a given equilibrium 

price without direct network effect (p̃B), introducing such effect (i) direc- 

tly increases buyer-side demand and (ii) raises the absolute value of the 

first derivative of demand with respect to buyer-side price. The latter 
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effect implies that under direct network effect, buyer-side demand de- 

creases more sharply as price rises. The former is called demand- 

augmenting effect, and the latter is called demand-sensitizing effect. 

Thus, ε ̃̃1B＜ε ̃̃0B indicates that in a monopoly case, the demand- 

augmenting effect dominates the demand-sensitizing effect. Only in the 

case 

 v(D1
B

(p̃B))
          ＝v’(D1

B
(p̃B)) 

  D1
B

(p̃B)

do the two effects balance out. These two counteracting effects on buyer- 

side are decomposed in Figure 4. The left panel shows how demand- 

augmenting effect causes platforms to increase buyer-side price. The 

platform has an incentive to increase p
B to extract the marginal utility 

of buyers generated by direct network effect. The right panel indicates 

how demand-sensitizing effect generates downward pressure on pB. By 

reducing buyer-side price, the platform can increase buyer-side demand 

at a larger magnitude compared with the case without direct network 

effect, which is profitable. 

The principle behind Theorem 1 is straightforward. ε ̃̃1B≤ε ̃̃0B indicates 

that for given equilibrium prices p̃B and p̃S without direct network effect, 

the introduction of direct network effect causes the elasticity of buyer-side 

demand to become “too” inelastic. This result demonstrates that equi- 

librium prices without direct network effect cannot be supported as equi- 

librium prices if direct network effect is introduced. Buyer-side demand 

becomes too inelastic because demand-augmenting effect dominates 

demand-sensitizing effect under the monopoly platform. Section III ex- 

plains that this result this is closely related to the competitive nature of 

the platform market. Demand loss when a platform increases buyer- 

side price is limited because of monopolistic power, which results in 

moderate demand-sensitizing effect. Section III explains that introducing 

competition among platforms can reverse the relative magnitude of 

demand-augmenting and demand-sensitizing effects. Hence, the optimal 

buyer-side price under direct network effect is higher than the optimal 

price without direct network effect. 

Meanwhile, introducing direct network effect on the buyer-side trans- 

mits to the seller-side because of cross-network effect. Under p̃B and p̃S, 
the elasticity of seller-side demand becomes relatively more elastic than 

that of buyer-side demand. Hence, equilibrium prices without direct 

network effect can no longer be supported as the optimal price under 
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direct network effect. The platform acquires an incentive to decrease pS, 

thereby inducing a substantial increase in seller-side demand. In this 

manner, the platform balances the demands of the the end users to 

achieve Equation (9) because of the conventional cross-network effect in 

two-sided markets.

III. Duopoly Platforms

A. Model

The case of a duopoly, where two platforms, namely, i＝1, 2, compete 

for the market, is considered in this section. The products of sellers are 

identical but different in location. Consequently, multi-homing does not 

occur unlike in the other studies mentioned earlier.

The analysis is based on a variant of Hotelling’s model, where the 

preferences for platforms of a buyer (seller) are represented by his/her 

location x (y) on a line. Buyer-side price imposed by platform i is 

denoted as pi
B
 and seller-side price as pi

S
. Similar to the linear demand 

specification considered in Rochet, and Tirole (2003), buyers are assumed 

to be uniformly distributed at a close interval of [－(Δ/2)－δ, (Δ/2)＋δ ]. 

Furthermore, sellers are also assumed to be uniformly distributed at  

[－(Δ/2)－δ , (Δ/2)＋δ ]. Platforms 1 and 2 are symmetrically located at a 

distance Δ/2 from the origin of the line. That is, platform 1 is located 

at －Δ/2 and platform 2 at Δ/2. In addition, buyers and sellers are 

assumed to have access to outside options, which are represented by 

two other symmetric platforms located at －(Δ/2)－δ  and Δ/2＋δ , and 

denoted as platforms 01 and 02, respectively. Platform 0i provides a net 

surplus b0
B
 to buyers and b0

S
 to sellers who join it, but does not 

generate direct network effect. Markets are assumed to be covered in 

the sense that all buyers and sellers should join at least one of the four 

platforms and should join only one of these platforms.

Introducing an outside option has the following advantage. If the 

standard Hotelling’s model, where platforms 1 and 2 are located at the 

end points, is used, then pi
B and pi

S cannot be pinned down. Only the 

sum of prices pi
B
 and pi

S
 is determined. This indeterminancy mainly 

arises from the fact that when full coverage and symmetry of the 

network externality function is assumed, the demand of each platform 

will be 1/2 regardless of whether direct network effect is present. This 

indeterminancy remains even if we introduce direct network effect. This 

problem can be resolve by providing outside options to each agent.
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FIGURE 5

DUOPOLY PLATFORMS: BUYER-SIDE

Given p1
B
 and p2

B
, denote buyer-side demand for platform i (i＝1, 2) as 

D1
B
i(pi

B
, pj

B
), where i≠j. Let the gross-per-transaction surplus of a buyer 

joining platform i be 

 b̃i
B
≡bB＋v(D1i

B
(pi

B
, pj

B
)), (i≠j),               (11)

where v(‧) is a common externality function that satisfies v(0)＝0, v’(z)＞

0, and v”(z)≤0 for all z∈[0, 1], and bB is fixed across buyers. For 

simplicity, b
B is assumed to be independent from the platform choice of 

buyers.

Thus, a buyer located at x and joining platform i (i＝1, 2) has utility  

{b
B＋v(D1

B
i (pi

B
, pj

B
))}－pi

B
－t|x－xi|,               (12)

where t denotes a transportation cost,4 and x1≡－(Δ/2), x2≡Δ/2.

Meanwhile, if a buyer chooses the outside option platform 0i (i＝1, 2), 

then his/her net surplus will be b0
B
, but he/she will be unable to enjoy 

additional surplus generated by direct network effect. Thus, if a buyer 

located at x chooses platform 0i, then his/her utility will be  

b0
B
－t|x－x0i

|,                         (13)

where x01
＝－(Δ/2)－δ  and x02

＝(Δ/2)＋δ. Buyers located on [－(Δ/2)－δ,

0) will never choose platform 02, and those on (0, (Δ/2)＋δ ] will never 

choose platform 01. b
B and b0

B
 are assumed to be sufficiently large, and 

4 The term t|x－xi| can be interpreted as a measure of the dissatisfaction of 

buyer x with platform i.
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thus, buyer-side market is fully covered.5

The upper left of Figure 5 depicts the net surplus of a buyer located 

at x1 who chooses platform 01, whereas the middle depicts the net sur- 

plus of a buyer located at x2 who chooses platform 1. 

Given p1
B
 and p2

B
, let xL̄, x ̄M, and x ̄R be the locations of a buyer who 

is indifferent between platforms 01 and 1, 1 and 2, and 2 and 02, re- 

spectively. Then, as illustrated in Figure 5, the buyer-side demand for 

platform 1 is determined by D1
B
1 (p1

B
, p2

B
)＝(1/(2δ＋Δ))(xM̄－xL̄), and that 

for platform 2 by D1
B
2＝(1/(2δ＋Δ))(xL̄－xM̄). That is, buyer-side demand 

for platform i (i＝1, 2) is implicitly determined by the following equations: 

        1     1                     1    1
D1

B
1＝           [2v(D1

B
1)－v(D1

B
2)]＋           [(p2

B
－2p1

B
) 

     (2δ＋Δ)  2t                  (2δ＋Δ)  2t
(14)

   ＋(b
B－b0

B
)＋t(δ＋Δ)],

        1     1                     1    1
D1

B
2＝           [2v(D1

B
2)－v(D1

B
1)]＋           [(p1

B－2p2
B)

     (2δ＋Δ)  2t                  (2δ＋Δ)  2t
(15)

   ＋(b
B－b0

B)＋t(δ＋Δ)].

For comparison, consider the case with no direct network effect. In 

this case, the gross-per-transaction surplus of a buyer joining either 

platforms 1 or platform 2 is b
B. Moreover, v(z)≡0 for all z∈[0, 1] in the 

case. Thus, buyer-side demand for platform i (i＝1, 2) is 

                    1    1
 D0

B
i (pi

B
, pj

B
)＝           [( pj

B
－2pi

B
)＋(bB－b0

B
)＋t(δ＋Δ)].       (16)

                  (2δ＋Δ)  2t

   

A structure that corresponds to the assumption b̅
B＞v’(0) in Section II 

is imposed. If a unit increase in demand generates “too much” marginal 

benefit through direct network externalities, then demand will signifi- 

cantly increase and generate substantial marginal benefit through direct 

network externalities. Thus, demand will neither be well-defined nor 

stable. The following assumption bounds the size of direct network ex- 

ternalities to rule out such situations.

5 If the market is not fully covered, then the case referred to as “local 

monopoly” occurs. Theorem 3 shows that the result derived in Theorem 1 holds 

in the “local monopoly” case.
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Assumption 1.

    2
          v’(0)＜1  
(2δ＋Δ)t

For later use, A≡(2δ＋Δ)2t. Then, Assumption 1 can be written as 

(4/A) v’(0)＜1. The following lemma proves useful.

Lemma 1. 

(i) Downward sloping: 

∂D1
B
i   ∂D0

B
i

     ＜     ＜0 for i＝1, 2 and i≠j.
∂pi

B   
∂pi

B

(ii) Positive cross elasticity: 

∂D1
B
j   ∂D0

B
j

      ＞     ＞0 for i＝1, 2 and i≠j.
∂pi

B   ∂pi
B

(iii) Local concavity: Under symmetric prices 

         ∂
2 D1

B
i    

p1
B＝p2

B,       ≤0 
         ∂pi

B2

for i＝1, 2. This condition implies the concavity of log D1
B
i under symmetric 

prices.6

Proof. See Appendix 3.                                            □

With regard to seller-side, a seller has the following options: platforms 

1, 2, 01, and 02. The gross-per-transaction surplus of a seller who is 

joining platform i (i＝1, 2) is b
S. Therefore, given p1

S
 and p2

S
, a seller 

located at y and joining platform i (i＝1, 2) has utility 

b
S－pi

S
－τ|y－yi|,                       (17)

6 In equilibrium analysis, attention will be restricted to a symmetric equilibrium. 

However, this local concave property is insufficient to ensure that a symmetric 

equilibrium will be the global maximum, but can ensure that it is the local 

maximum. 
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FIGURE 6

DUOPOLY PLATFORMS: SELLER-SIDE

where τ denotes transportation cost and y1≡－Δ/2, y2≡Δ/2. 

By contrast, if a seller located at y joins platform 0i (i＝1, 2), then 

his/her utility will be 

b0
S
－τ|y－y0i

|,                        (18)

where y01
＝－(Δ/2)－δ  and y02

＝(Δ/2)＋δ . Similar to the case of buyers, 

sellers located on [－(Δ/2)－δ, 0) will never choose platform 02, whereas 

those on (0, (Δ/2)＋δ ] will never join platform 01. b
S and b0

S
 are assumed 

to be sufficiently large, and thus, the seller-side market is fully covered.

The net surplus of a seller located at y1 who chooses platform 01 is 

depicted in the upper left of Figure 6, whereas that of a seller at y2 who 

chooses platform 1 is illustrated in the upper right. As shown in Figure 

6, given p1
S
 and p2

S
, we can derive the seller-side demand for platform i 

(i＝1, 2) by following a logic similar to that of buyers, which is given as 

follows:

                    1     1
Di

S
(pi

S
, pj

S
)＝          [( pj

S
－2pi

B
)＋(bS－b0

S
)＋τ(δ＋Δ)].       (19)

                 (2δ＋Δ)  2τ

Similar to that in the monopoly case, the manner in which indirect 

network effect occurs is illustrated by defining net per-transaction sur- 

pluses on each side as Vi
B

(pi
B
, pj

B
)≡∫＋p

∞

i
B D1

B
i (t, pj

B
)dt and Vi

S
(pi

S
, pj

S
)≡∫＋p

∞

i
S

Di
S

(t, pj
S
)dt. Then, the average net surpluses on each side is given by 

Wi
B

(pi
B
, pj

B
, pi

S
, pj

S
)≡Vi

B
(pi

B
, pj

B
)‧Di

S
(pi

S
, pj

S
),           (20)

Wi
S
(pi

S
, pj

S
, pi

B
, pj

B
)≡Vi

S
(pi

S
, pj

S
)‧D1

B
i (pi

B
, pj

B
).           (21)
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An increase in demand on one side leads to an increase in the 

average net surplus on the other side. This situation reflects indirect 

network effect among end users.

B. Pricing Decision

Platform i (i＝1, 2) attempts to maximize its profit by choosing pi
B and 

pi
S appropriately. The total profit of platform i is determined as follows: 

π i＝(pi
B＋pi

S－c)D1
B
i (pi

B, pj
B)Di

S (pi
S, pj

S).  (i≠j).

This maximization problem is characterized by FOCs as follows: 

∂(log π i)       1          1       ∂D1
B
i (pi

B
, pj

B
)

        ＝          ＋                        ＝0,
  ∂pi

B    
pi

B
＋pi

S
－c   D1

B
i (pi

B
, pj

B
)      ∂pi

B

∂(log π i)       1          1       ∂Di
S
(pi

S
, pj

S
)

        ＝          ＋                        ＝0,
  ∂pi

S     
pi

B
＋pi

S
－c  Di

S
(pi

S
, pj

S
)     ∂pi

S

where i≠j.

Attention is limited to a symmetric equilibrium. Deriving an explicit 

expression for symmetric equilibrium prices for the hypothetical situation 

without direct network effect is a straightforward process that involves 

plugging in v(.)≡0 in Equations (43), (44), and (45) in Appendix 4. The 

existence of symmetric equilibrium for the proposed duopoly model with 

direct network effect can be deduced using Theorems 2 and 3.

Symmetric equilibrium prices are denoted as P̂
B＝p̂1

B
＝p̂2

B
 and P̂S＝p̂1

S

＝p̂2
S.7 Then, equilibrium conditions are pinned down to 

 

                                     D̂1
B
i

P̂B＋P̂S－c＝－           ,                     (22)
                                 ∂D̂1

B
i/∂pi

B

                                      D̂i
S

P̂B＋P̂S－c＝－            ,                    (23)
                                 ∂D̂i

S
/∂pi

S

where D̂1
B
i≡D1

B
i (P̂

B, P̂B) and D̂i
S≡Di

S (P̂S, P̂S).

The elasticity of buyer-side demand for platform i (i＝1, 2) is defined 

7 A capital letter P is used to denote symmetric prices in a duopoly case to 

avoid confusion with prices in a monopoly case.
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as ε1
B
i (pi

B
, pj

B
)≡－(pi

B
)/(D1

B
i) (∂D1

B
i)/(∂pi

B
) and that of seller-side demand 

as ε i
S
(pi

S
, pj

S
)≡－(pi

S
)/(Di

S
) (∂Di

S
)/(∂pi

S
).8 Then, we obtain the following 

expression that characterizes symmetric equilibrium under duopoly 

platforms:9

P̂B＋P̂S－c＝P̂B/ε1
B
i (P̂

B, P̂B),                   (24)

P̂
B＋P̂S－c＝P̂S/ε i

S
(P̂S, P̂S).                   (25)

Equations (24) and (25) are necessary and sufficient conditions for 

symmetric equilibrium based on the local concavity of buyer-side de- 

mand. For notational simplicity, let ε ̂1B≡ε1
B
i (P̂

B, P̂B) and ε ̂S≡ε i
S

(P̂S, P̂S). 

Assuming ε ̂1≡ε ̂1B＋ε ̂S＞1, the following proposition can be directly 

obtained.

Proposition 2.

Under symmetric equilibrium,

(i) The total price of each platform P̂≡P̂
B＋P̂S is given by the standard 

Lerner formula for total volume elasticity as follows: 

                             P̂－c  1
     ＝  .                           (26)

                              P̂    ε ̂1
(ii) The price structure is given by the ratio of elasticities as follows: 

                             P̂
B   P̂S

   ＝   .                            (27)
                            ε ̂1B   ε ̂S

An appropriate expression for equilibrium prices is provided in 

Appendix 4.

C. With Direct Network Effect versus Without Direct Network 

Effectunder Duopoly

Similar to that in Section II, “benchmark” is defined as the situation 

where only cross-network effect exists. Assume v(z)≡0, ∀z∈[0, 1]. 

8 The exact formula for this expression is ε i
S
(pi

S
, pj

S
)＝(2pi

S
)/(( pj

S
－2pi

S
)＋(b

S
－

b0
S
)＋τ(δ＋Δ)).
9 Note that under symmetric equilibrium prices P̂

B
 and P̂

S
, ε1

B
1 (P̂

B
, P̂

B
)＝ε1

B
2 (P̂

B
,

P̂B) and ε1
S (P̂S, P̂S)＝ε2

S (P̂S, P̂S).
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Then, Ω＝1/2, and thus, symmetric optimal prices chosen by platforms 

are directly obtained using the expression of equilibrium prices provided 

in Appendix 4. 

               1
P̃

B≡p̃1
B
＝p̃2

B
＝  [3{(bB－b0

B
)＋t(δ＋Δ)}－2{(bS－b0

S
)＋τ (δ＋Δ)}＋2c]   (28)

                5

               1
P̃

S≡p̃1
S
＝p̃2

S
＝  [3{(bS－b0

S
)＋τ(δ＋Δ)}－2{(bB－b0

B
)＋t(δ＋Δ)}＋2c]   (29)

                5

                1
P̃≡P̃B＋P̃S＝  [{(bB－b0

B
)＋t(δ＋Δ)}＋{(bS－b0

S
)＋τ(δ＋Δ)}＋4c]     (30)

                 5

For later use, the elasticity of buyer-side demand for platform i in the 

benchmark case is defined as 

               pi
B
  ∂D0

B
i            2pi

B

ε0
B
i (pi

B
, pj

B
)≡－          ＝                            ; 

               D0
B
i  ∂pi

B   ( pj
B－2pi

B)＋(bB－b0
B)＋t(δ＋Δ)

and ε0
B
i (P̃

B, P̃B), ε1
B
i (P̃

B, P̃B), and ε i
S
(P̃S, P̃S) are denoted as ε ̃0B, ε ̃1B, and ε ̃S, 

respectively.

In the case under direct network effect, symmetric equilibrium prices 

P̂
B and P̂S are characterized by Proposition 3. Theorem 2 shows that 

under competition, the side with direct network effect can receive a 

discount if sufficient network externalities exist. Recall that ε ̃0B, ε ̃1B, and 

ε ̃S are elasticities evaluated at benchmark equilibrium prices P̃B and P̃S, 

whereas ε ̂1B and ε ̂S are evaluated at equilibrium prices under direct 

network effect P̂B and P̂S. Similarly, “D̃0
B
i, D̃1

B
i, and D̃i

S
” and “D̂1

B
i and D̂i

S
” 

are corresponding demands evaluated at “P̃
B and P̃S” and “P̂B and P̂S”, 

respectively. P≡PB＋PS.

Theorem 2.

Unique symmetric solutions P̂
B and P̂S exist for solving Equations (26) 

and (27), respectively. 

Moreover, the following expressions hold: 

(i) If ε ̂1B＞ε ̂0B, then P̂B＜P̃B, P̂S＞P̃S, and P̂＜P̃.

(ii) If ε ̂1B＝ε ̂0B, then P̂B＝P̃B, P̂S＝P̃S, and P̂＝P̃.

(iii) If ε ̂1B＜ε ̂0B, then P̂B＞P̃B, P̂S＜P̃S, and P̂＞P̃.
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The necessary sufficient condition for (i) to occur is as follows: the mar- 

ginal utility generated by direct network effect diminishes slowly such 

that avg(v(D̃1
B
i ))≡(V(D̃1

B
i ))/(D̃1

B
i ) is close to v’(D̃1

B
i ). The exact condition is 

given as follows:10

               (2A－6v’(D̃1
B
i))

A－             (A－v’(D̃1
B
i))＞avg(v(D̃1

B
i)).               (31)

               (2A－3v’(D̃1
B
i))

As a special case, if the marginal utility generated by direct network 

effect does not diminish (i.e., v”(z)＝0, ∀z∈[0, 1]), then (i) occurs. 

Proof. See Appendix 5.                                            □

Before investigating the implication of Theorem 2, note that the 

model considered in this section subsumes the monopoly platform case. 

Remember that full coverage has been assumed for illustrative simpli- 

city. Suppose that b
B and bS are insuffciently high. Then, as illustrated 

in Figure 7, buyers and sellers located near the center of the line [－(Δ/2)

－δ , δ＋(Δ/2)] may choose to join neither platforms 1 nor 2. This scen- 

ario indicates that the market is separated and each platform exercises 

market power in each region. In this study, this case is referred to as 

“local monopoly.” Theorem 3 shows that the result derived in Theorem 

1 holds under the “local monopoly” situation in the model considered in 

this section. 

Theorem 3.

Let the symmetric equilibrium prices for the local monopoly case be P̂
B* 

and P̂S*. The corresponding buyer-side demand is defined as D1
B
i
*
(PB). 

Moreover, let the symmetric equilibrium prices for the local monopoly 

case in the benchmark model (i.e., without direct network effect) be P̃
B* 

and P̃S*. Then, 

(i) equilibrium prices P̂
B* and P̂S* are uniquely determined.

(ii) Moreover, P̂B*≥P̃B*, P̂S*≤P̃S*, and P̂≥P̃ hold, where equalities are 

satisfied if and only if 

10 Note that avg(v(D̃1
B
i ))≥v’(D̃1

B
i ) always holds because of the (weak) concavity of 

v(‧). Moreover, direct calculation shows that A－((2A－6v’(D̃1
B
i )))/((2A－3v’(D̃1

B
i )))(A

－v’(D̃1
B
i ))＞v’(D̃1

B
i ) always holds. Thus, condition (31) provides the upper and lower 

bounds of avg(v(D̃1
B
i )), which ensure the occurrence of (i). In Appendix 5, this 

condition is demonstrated as necessary and sufficient for (i) to occur.
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FIGURE 7

LOCAL MONOPOLY

 v(D1
B
1
*
(P̃B*))

           ＝v’(D1
B
1
*
(P̃B*)). 

  D1
B
1
*
(P̃B*))

Proof. See Appendix 4.                                             □

Similar to that in the monopoly case, demand-augmenting effect and 

demand-sensitizing effect coexist in a duopoly framework. However, 

unlike in the monopoly case, demand-sensitizing effect can dominate 

demand augmenting effect, thereby inducing competing platforms to 

provide discount to the buyer-side while penalizing the seller-side. In- 

tuitively, introducting platform competition into buyer-side limits demand- 

augmenting effect because competing platforms should split the total 

buyer-side demand. Consider a case in which δ  is extremely close to 0. 

In this case, competing platforms 1 and 2 nearly partition buyer-side. 

In such extreme case, a marginal reduction of t (increase in competi- 

tion) augments a negligible amount of demand, which in turn suggests 

that a marginal increase in demand that is purely attributed to direct 

network effect is also negligible (i.e., negligible demand-augmenting effect).

By contrast, demand sensitizing effect can prevail. Suppose platform 

i increases buyer-side price. Then, buyer-side demand for platform i 

decreases more severely in a competitive environment than in a less 
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competitive environment. Evidently, loss of demand will be maximized if 

v’(z)≡η , ∀z∈[0, 1] (i.e., in the case where the marginal utility generated 

by direct network effect does not increase as buyer-side demand for 

platform i decreases). However, if the marginal utility generated by direct 

network effect diminishes rapidly, then the reduction in demand caused 

by an increase in pi
B will be alleviated because the marginal effect in 

such scenario is stronger with lower demand, which counters the decre- 

asing pressure of demand. Condition (31) ensures that demand-sensitizing 

effect dominates demand-augmenting effect.

IV. Comparative Statistics

In this section, comparative statistics are provided under the as- 

sumption of linear direct network effect (i.e., v(z)≡ηz, ∀z∈[0, 1]). As 

shown in Theorem 2, introduction of direct network effect in this case 

reduces buyer-side price and increases seller-side price, while decreasing 

overall price. Though the assumption of linear direct network effect 

seems restrictive, the results provided in this section are preserved to 

the case where we allow moderate degree of diminishing marginal utility 

generated by direct network effect, because of continuity.

Under linear direct network effect, we can derive symmetric equilibrium 

prices explicitly using Equation (49) in Appendix 5, as shown in 

Appendix 7.

Theorem 4.

Assume that a linear direct network effect occurs. As the magnitude of 

direct network effect η  increases, buyer-side price P̂B decreases, seller-side 

price P̂S increases, and overall price P̂ decreases. 

Proof. See Appendix 7.                                            □

Theorem 5.

Assume that a linear direct network effect occurs. As the market 

power of the platforms increases in the seller-side (i.e., τ↑), buyer-side 

price P̂B decreases, seller-side price P̂S increases, and overall price P̂ de- 

creases.

Furthermore, given η＞0, the price gap between the benchmark and 

the case under direct network effect (i.e., P̃B－P̂B) increases as τ goes up. 

Proof. See Appendix 8.                                            □
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Theorem 5 indicates that even under direct network effect, the intro- 

duction of competition among platforms in the seller-side relieves the 

incentive of each platform to lower buyer-side price P̂
B (i.e., τ↓⇒ P̂B↑).

Theorem 6.

Assume that a linear direct network effect occurs. As the market 

power of the platforms increases on the buyer-side (i.e., t↑), buyer-side 

price P̂
B increases, seller-side price P̂S decreases, and overall price P ̂ 

increases.

However, whether the price gap between the benchmark and the case 

under direct network effect (i.e., P̃
B－P̂B) increases as t goes up remains 

unclear. 

Proof. See Appendix 9.                                            □

Although the sign of (∂/∂t)(P̃
B－P̂B) remains ambiguous, numerical 

simulations indicates that for nearly all parameter ranges, (∂P̂
B)/∂t＞

(∂P̃B)/∂t occurs. Only for sufficiently small values of both (bB－b0
B
)＋(bS

－b0
S
)－c and η  can (∂P̂B)/∂t＜(∂P̃B)/∂t occur. This result indicates that 

under sufficient direct network effect (i.e., sufficiently large η ), introdu- 

cing platform competition into the buyer-side can strengthen the incen- 

tive of each platform to lower buyer-side price P̂B (i.e., t↓⇒P̂B↓). This 

result is in line with Theorems 1 and 3, given that monopoly power on 

the buyer-side weakens demand-sensitizing effect relative to demand- 

augmenting effect, thereby resulting in an upward pressure on buyer- 

side price.

V. Conclusion

The optimal pricing strategy of monopoly/duopoly platform(s) where 

one side of a group is under direct network effect are investigated. In 

contrast to the monopoly platform framework where demand-augmenting 

effect dominates, either demand-augmenting effect or demand-sensitizing 

effect can dominate in the duopoly framework. In particular, if the 

marginal utility generated by direct network effect diminishes sufficiently 

slowly as buyer-side demand increases, then demand-sensitizing effect 

dominates, which induces competing platforms to lower buyer-side price 

and increase seller-side price. In this study, the sum of both prices 

decreases, which is in line with the pricing convention of platforms 

under the competitive environment illustrated in the introduction. These 
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real-world platforms typically charge low fees (or even allow free usage 

of platform services) to customers and charge high fees to content 

providers. Moreover, the result implies that even in the case where 

platforms charge seemingly excessively low prices to buyers, these pri- 

cing decisions may reflect strong direct network externalities instead of 

anticompetitive practices, thereby requiring close scrutiny.

In the special case under linear direct network effect (v(z)≡ηz, ∀z∈

[0, 1]), demand sensitizing effect dominates. Under this environment, 

the behaviour of competing platforms is strengthened as the magnitude 

of direct network effect increases. That is, buyer-side price decreases, 

whereas seller-side price increases. In addition, a stronger competition 

among platforms in the seller-side implies incentive of each platform to 

lower buyer-side price is reduced. By contrast, a stronger competition 

among platforms in the buyer-side implies incentive of each platform to 

provide a discount to the buyer-side is strengthened. Thus, the effect of 

introducing direct network effect on the equilibrium buyer-side price 

depends on the relative competitiveness of each side of the market.

(Received 27 May 2015; Revised 9 June 2016 ; Accepted 11 July 2016)

Appendix

A. Appendix 1

Equilibrium prices of the monopoly model

The equilibrium prices in Proposition 1 can be explicitly derived by 

substituting the definition of elasticities into Equations (8) and (9). Let 

D̂1
B
≡D1

B
(p̂B). The equilibrium prices are 

                     1 p̂B＝  [2{b̅B＋v(D̂1
B
)－D̂1

B
‧v’(D̂1

B
)}－b̅S＋c],           (32)

                     3

                     1
p̂

S＝  [2b̅S－{b̅B＋v(D̂1
B
)－D̂1

B
‧v’(D̂1

B
)}＋c],           (33)

                     3

                     1
p̂＝  [{b̅B＋v(D̂1

B
)－D̂1

B
‧v’(D̂1

B
)}＋b̅S＋c].            (34)

                     3



COMPETITION IN TWO-SIDED PLATFORM MARKETS 361

B. Appendix 2

Alternative proof of Theorem 1 

The logic of the proof of Theorem 2 is analogous to that provided 

herein.

Proof. To compare p̂
B and p̂S with the benchmark p̃B and p̃S, note 

that the relation pB＋pS－c＝b̅S－pS holds in both cases in the equili- 

brium. Thus, pS＝(1/2) [b̅S＋c－pB] in both cases. By substituting this 

expression into Equations (6) and (7), we obtain the following equa- 

tions, respectively: 

                    1
b̅

S－pS＝  (b̅S－c＋pB)＝D1
B

(pB)[b̅B－v’(D1
B

(pB))],
                      2

                           1
b̅

S－pS＝  (b̅S－c＋pB)＝b̅B－pB.
                            2

The first expression characterizes the equilibrium of the case under 

direct and indirect network effects, whereas the second characterizes 

the equilibrium of the benchmark case. Therefore, based on the defini- 

tions of p̂
B, p̂S and p̃B, p̃S, 

　

                  1
b̅

S－p̂S＝  (b̅S－c＋p̂B)＝D1
B

(p̂B)[b̅B－v’(D1
B

(p̂B))],           (35)
                    2

                          1
b̅S－p̃S＝  (b̅S－c＋p̃B)＝b̅B－p̃B.                  (36)

                           2

Before proceeding, note that p
B＜b̅B,11 D1

B (pB)＞D0
B (pB), and b̅B－v’(D1

B

(pB))＜b̅B, where D0
B

(pB)‧b̅B≡b̅B－pB. Thus, at first glance, both D1
B

(p̃B) 

[b̅
B－v’(D1

B
(p̃B))]＜b̅B－p̃B and D1

B
(p̃B)[b̅B－v’(D1

B
(p̃B))]≥b̅B－p̃B appear pos- 

sible. However, the former turns out to be impossible.

To demontrate this situation, note that 

                               b̅
B－p̃B＋v(D1

B (p̃B))
D1

B
(p̃B)[b̅B－v’(D1

B
(p̃B))]＝                  [b̅B－v’(D1

B
(p̃B))]

                                       b̅B

11 Note that p̃
B
＝(1/3)[2b̅

B
－b̅

S
＋c]＜b̅

B
 for a moderate value of c.
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                             ＝{b̅B－p̃B＋v(D1
B

(p̃B))}－D1
B

(p̃B)v’(D1
B

(p̃B)).

Thus, D1
B (p̃B)[b̅B－v’(D1

B (p̃B))]≥b̅B－p̃B is equivalent to 

                         v(D1
B

(p̃B))
         ≥v’(D1

B
(p̃B)),

                           D1
B

(p̃B)

which always holds based on the assumption v”(z)≤0 ∀z∈[0, 1].

Hence, we obtain 

                  1
  (b̅S－c＋p̃B)≤D1

B
(p̃B)[b̅B－v’(D1

B
(p̃B))].           (37)

                  2

Evidently, the left side of the preceding equation is an increasing 

function of p
B. Note that 

d[D1
B

(pB){b̅B－v’(D1
B

(pB)}]  dD1
B

(pB)
                        ＝        ‧[{b̅B－v’(D1

B (pB)}
           dpB              dpB

                        －v”(D1
B

(pB))‧D1
B

(pB)]＜0

via Remark 1.(i). That is, the right side of the preceding equation is a 

decreasing function of p
B.

Therefore, if the inequality in Equation (37) is strict, then a unique 

price p̂B higher than p̃B exists, such that (1/2)(b̅S－c＋p̂B)＝D1
B

(p̃B)[b̅B－

v’(D1
B

(p̃B))] holds. This condition suggests p̂S＝(1/2)[b̅S＋c－p̂B]＜(1/2)[b̅S

＋c－p̃B]＝p̃B and p̂＝(1/2)[b̅S＋c＋p̂B]＞(1/2)[b̅S＋c＋p̃B].

Moreover, p̂B＝p̃B, p̂S＝p̃S, and p̂＝p̃ hold if and only if Equation (37) 

holds in equality, and if and only if 

                         v(D1
B

(p̃B))
         ＝v’(D1

B (p̃B)).                     □
                           D1

B
(p̃B)

C. Appendix 3

Lemma 1.

Proof. Without losing generality, let i＝1 and j＝2. First, we can 

directly calculate 

          ∂D0
B
1     2      ∂D0

B
2  1

     ＝－    and      ＝   from Equation (16).
           ∂p1

B     
A      ∂p1

B   
A
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Then, by differentiating D1
B
1 in Equation (14) with respect to p1

B
, we 

obtain

∂D1
B
1  1         ∂D1

B
1        ∂D1

B
2

     ＝  [2v’(D1
B
1)     －v’(D1

B
2)     －2].

∂p1
B   A         ∂p1

B         ∂p1
B  

This equation can be rewritten as 

              1         ∂D1
B
1   1       ∂D1

B
2   ∂D0

B
1

[1－   2v’(D1
B
1)]     ＋  v’(D1

B
2)     ＝      .           (38)

              A         ∂p1
B   

A       ∂p1
B   

∂p1
B

Similarly, by differentiating D1
B
2 in Equation (15) with respect to p1

B
, 

we can show that 

              1         ∂D1
B
2   1       ∂D1

B
1   ∂D0

B
2

[1－   2v’(D1
B
2)]     ＋  v’(D1

B
1)     ＝      .           (39)

              A         ∂p1
B   

A       ∂p1
B   

∂p1
B

We can observe that Equations (38) and (39) form simultaneous 

equations in which (∂D1
B
1)/(∂p1

B
) and (∂D1

B
2)/(∂p1

B
) are unknowns. By 

solving these equations, we obtain 

                    2          ∂D0
B
1   v’(D1

B
2)

             {1－   v’(D1
B
2)}      －      

∂D1
B
1            A        ∂p1

B     
A2

     ＝                                            ,         (40)
∂p1

B
        2            2          v’(D1

B
1)v’(D1

B
2)’

        {1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－                         A            A              A2

                        ∂D0
B
2

                              
∂D1

B
2                    ∂p1

B
        

      ＝                                              .        (41)
∂p1

B        
2            2          v’(D1

B
1)v’(D1

B
2)

         {1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－                          A            A              A2

Consider Equation (40). The following relations hold based on Assum- 

ption 1: 

       2
0＜1－  {v’(D1

B
1)＋v’(D1

B
2)}

       A

         2                   3
   ＜1－  {v’(D1

B
1)＋v’(D1

B
2)}＋   v’(D1

B
1)v’(D1

B
2)

         A                   A2
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         2            2          v’(D1
B
1)v’(D1

B
2)

   ＝{1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－             .

         A            A               A2

By dividing the denominator and the numerator of Equation (40) by 

{1－(2/A) v’(D1
B
2)}(＞0), we obtain

                          v’(D1
B
2)

                                
              ∂D0

B
1         A2

                   －              
              ∂p1

B
        2

                      {1－  v’(D1
B
2)}

∂D1
B
1                        A

      ＝                                 .               (42)
∂p1

B                     
v’(D1

B
1)v’(D1

B
2)

                                     
             2                A2

         {1－  v’(D1
B
1)}－              

             A              2
                         {1－  v’(D1

B
2)}

                             A

Note that the denominator of Equation (42) is positive (given that a 

positive value divided by a positive term is positive) and smaller than 1 

(given that both 

               v’(D1
B
1)v’(D1

B
2)

                           
2                   A2

  v’(D1
B
1) and             

A                  2 
               {1－  v’(D1

B
2)}

                    A

are positive). Thus, the following relations hold: 

                        v’(D1
B
2)

                              
             ∂D0

B
1         A2

                  －              
             ∂p1

B
         2

                    {1－  v’(D1
B
2)}

∂D1
B
1                    A

     ＝                                
∂p1

B
                    v’(D1

B
1)v’(D1

B
2)

                                     
             2                A2

         {1－  v’(D1
B
1)}－              

             A               2
                         {1－  v’(D1

B
2)}

                             A 
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              ∂D0
B
1

                   
                 ∂p1

B                    
∂D0

B
1

     ＜                              ＜      .
                        v’(D1

B
1)v’(D1

B
2)   ∂p1

B

                                    
            2                A2

        {1－  v’(D1
B
1)}－              

            A              2
                        {1－  v’(D1

B
2)}

                            A

The first part of Lemma 1 is completed.

Consider Equation (41). The following relations hold based on 

Assumption 1. 

   

       2
0＜1－  {v’(D1

B
1)＋v’(D1

B
2)}

       A

       2                  3
 ＜1－  {v’(D1

B
1)＋v’(D1

B
2)}＋  v’(D1

B
1)v’(D1

B
2)

      A                  A2

       2            2          (v’(D1
B
1)v’(D1

B
2)

 ＝{1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－             )

      A           A             A
2

      2            2
 ＜{1－  v’(D1

B
1)}{1－  v’(D1

B
2)}＜1.

      A            A

The denominator of Equation (41) is positive and smaller than 1. Thus, 

                         ∂D0
B
2

                              
∂D1

B
2                    ∂p1

B                        ∂D0
B
2

     ＝                                              ＞     .
∂p1

B        
2            2          v’(D1

B
1)v’(D1

B
2)      ∂p1

B

       {1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－            

            A           A               A2

The second part of the proof is completed.

Now, the concavity of D1
B
i will be shown with respect to pi

B
 under 

symmetric prices p1
B
＝p2

B
. Without loss, let i＝1. For notational simplicity, 

denote the numerator of Equation (40) as HN and the denominator as 

HD. Then, 

∂
2D1

B
1   1      ∂HN  ∂HD

      ＝    [HD‧    －     ‧HN]. 
∂p1

B2   
HD

2     
∂p1

B  
∂p1

B

First, note that HN＜ 0 and HD＞ 0 have already been established.  

(∂HN)/(∂p1
B)≤0 and (∂HD)/(∂p1

B)≤0, which implies that [HD‧(∂HN)/(∂
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p1
B
)－(∂HD)/(∂p1

B
 )‧HN]≤0, and thus, (∂2D1

B
1)/(∂p1

B2
)≤0.

First, we can directly calculate 

∂HN    ∂        2        ∂D0
B
1  v’(D1

B
2)  3        ∂D1

B
2

     ＝     ({1－  v’(D1
B
2)}      －      ＝   v”(D1

B
2)      ≤0. 

∂p1
B   ∂p1

B     A        ∂p1
B    A2    A2       ∂p1

B

Second, 

∂HD   ∂       2           2         v’(D1
B
1)v’(D1

B
2) 

    ＝    ({1－  v’(D1
B
1)}{1－  v’(D1

B
2)}－            

∂p1
B  

∂p1
B      

A            A              A2

        ∂      2                   3         
     ＝    (1－  {v’(D1

B
1)＋v’(D1

B
2)}＋   v’(D1

B
1)v’(D1

B
2))

       ∂p1
B     A                   A2   

             ∂D1
B
1   2    3                ∂D1

B
2    2    3

     ＝v”(D1
B
1)    [－  ＋  v’(D1

B
2)]＋v”(D1

B
2)     [－  ＋   v’(D1

B
1)]

             ∂p1
B    

A   A2                ∂p1
B    A    A2

                2   3         ∂D1
B
1  ∂D1

B
2          

     ＝v”(D1
B
1)[－  ＋  v’(D1

B
1)] (     ＋     ).

                A   A2         ∂p1
B
   ∂p1

B
      

Given that we are considering symmetric prices, D1
B
1＝D1

B
2 holds, 

thereby implying that v’(D1
B
1)＝v’(D1

B
2) and v”(D1

B
1)＝v”(D1

B
2), from which 

the last equality follows. Assumption 1 implies that [－(2/A)＋(3/A2)  

v’(D1
B
1)]＜0. By summing (40) and (41), we obtain ((∂D1

B
1)/(∂p1

B
)＋(∂D1

B
2)/

(∂p1
B
))＝(1/B)[－(1/A)＋(3/A2)v’(D1

B
2)]＜0. Given that v”(D1

B
1)≤0, we 

conclude that (∂HD)/(∂p1
B
)≤0. The third part of Lemma 1 is thus 

completed.                                                            □

D. Appendix 4

Equilibrium prices of duopoly model 

Let D̂1
B
≡D1

B
i (P̂

B, P̂B),∀i＝1,2. Then, the equilibrium prices of the 

duopoly model can be expressed as follows: 

      3Ω                               1                  
P̂

B＝      [v(D̂1
B
)＋(bB－b0

B
)＋t(δ＋Δ)]－       [(bS－b0

S
)＋τ(δ＋Δ)]

    3Ω＋1                            3Ω＋1                
(43)

       1
  ＋        c, 
     3Ω＋1 

     Ω＋1                       2Ω                     
P̂

S＝      [(bS－b0
S
)＋τ(δ＋Δ)]－      [v(D̂1

B
)＋(bB－b0

B
)＋t(δ＋Δ)]

    3Ω＋1                     3Ω＋1
(44)
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      2Ω
  ＋       c, 
    3Ω＋1

      Ω                                Ω      
P̂＝      [v(D̂1

B
)＋(bB－b0

B
)＋t(δ＋Δ)]＋      [(bS－b0

S
)＋τ(δ＋Δ)]

    3Ω＋1                            3Ω＋1
(45)

    2Ω＋1  
  ＋       c, 
    3Ω＋1

               2          1            
           {1－ v’(D̂1

B
)}2－  v’(D̂1

B
)}2          

               A           A2           

where Ω≡                           .
                  2          1 
             2{1－  v’(D̂1

B
)}－  v’(D̂1

B
)  

                  A          A

Proof. Recall that buyer-side demands are given by 

     1                 1     
D1

B
i＝  [2v(D1

B
i－v(D1

B
j)]＋  [( pj

B
－2pi

B
)＋(bB－b0

B
)＋t(δ＋Δ)], (i≠j).

     A                 A      

From Lemma 1(i), the following expression is obtained:

                   2        2   v’(D1
B
j)    

               {1－  v’(D1
B
j)}   ＋            

∂D1
B
i               A        A    A2  

     ＝－                                         , (i≠j).
∂pi

B
          2           2          v’(D1

B
i)v’(D1

B
j)

         {1－  v’(D1
B
i)}{1－  v’(D1

B
j)}－             

              A           A              A
2

Using the preceding expression, FOCs (22) and (23) can be expressed 

as

                2           1           
           [{1－  v’(D̂1

B
)}

2
－  {v’(D̂1

B
)}

2
][v(D̂1

B
)＋{－P̂

B
＋(b

B
－b0

B
)＋t(δ＋Δ)}]

                A           A
2
    

P̂
B
＋P̂

S
－c＝                                                           , (46)

                          2          1
                     2{1－  v’(D̂1

B
)}－  v’(D̂1

B
)         

                          A          A   

           －P̂S＋(bS－b0
S)＋τ (δ＋Δ)

P̂B＋P̂S－c＝                       ,                  (47)
                    2  

where D̂1
B
≡D1

B
i (P̂, P̂),∀i＝1, 2. 
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After rearranging Equation (47) into P̂S＝(1/3)[－2P̂B＋(bS－b0
S
)＋2c＋

τ(δ＋Δ)], we substitute this expression into Equation (46), which yields 

1
  [P̂B＋(bS－b0

S
)＋τ (δ＋Δ)－c]＝Ω[v(D̂1

B
)＋{－P̂B＋(bB－b0

B
)＋t(δ＋Δ)}],  (48)

3

where 

        2           1   
    {1－  v’(D̂1

B
)}2－  v’(D̂1

B
)}2 

        A          A2        
Ω≡                          . 
           2         1  
     2{1－  v’(D̂1

B
)}－  v’(D̂1

B
) 

           A         A   

Rearranging Equation (48) yields expression Equation (43). The 

expressions for P̂
S and P̂ can also be derived by substituting Equation 

(43) into Equation (47).                   □

E. Appendix 5

Theorem 2.

Proof. To compare P̂
B and P̂S with benchmark P̃B and P̃S, note first 

that the relation pi
B＋pi

S－c＝(( pj
S－2pi

S)＋(bS－b0
S)＋τ(δ＋Δ))/2 holds in 

both cases in equilibrium. This condition follows directly from the FOC 

with respect to pi
S
, where (( pj

S
－2pi

S
)＋(bS－b0

S
)＋τ (δ＋Δ))/2 is the expres- 

sion for －(DS (pi
S
, pj

S
))/(∂DS (pi

S
, pj

S
)/∂pi

S
). Given that we are considering 

symmetric equilibrium, this relation can be written as PB＋PS－c＝((PS－

2P
S)＋(bS－b0

S
)＋τ (δ＋Δ))/2, or PS＝(1/3)[－2PB＋(bS－b0

S
)＋2c＋τ (δ＋Δ)] 

after rearrangement. In this study, PB≡p1
B
＝p2

B
 and PS≡p1

S
＝p2

S
 denote 

symmetric prices. By substituting these symmetric prices into Equation 

(22), we obtain 

1                                 D̂1
B
i

 [P̂B＋(bS－b0
S
)＋τ(δ＋Δ)－c]＝－         ,               (49)

3                             ∂D̂1
B
i/∂pi

B
   

1                            －P̃
B＋(bB－b0

B)＋t(δ＋Δ)  
  [P̃B＋(bS－b0

S
)＋τ (δ＋Δ)－c]＝                       ,        (50)

3                                      2

where (－P̃
B＋(bB－b0

B
)＋t(δ＋Δ))/2 is the expression for －(D̃0

B
i)/(∂D̃0

B
i/∂pi

B
). 

The first relation characterizes the equilibrium of the case under both 
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direct and indirect network effects, whereas the second relation char- 

acterizes the benchmark case.

Before proceeding, note that D̃0
B
i＜D̃0

B
i＋(1/A) v(D̃1

B
i)＝D̃1

B
i based on 

Equations (14), (15), and (16). Moreover, A/2＝－1/(∂D̃0
B
i/∂pi

B)＞－1/  

(∂D̃1
B
i/∂pi

B
) according to Lemma 1(i). Thus, －(D̃1

B
i)/(∂D̃1

B
i/∂pi

B
)＜－(D̃0

B
i)/

(∂D̃0
B
i/∂pi

B) and －(D̃1
B
i)/(∂D̃1

B
i/∂pi

B)≥－(D̃0
B
i)/(∂D̃0

B
i/∂pi

B) are both possible, 

depending on the relative size of D̃1
B
i/D̃0i and (∂D̃1

B
i/∂pi

B)/(∂D̃0
B
i/∂pi

B).

Assume ε ̃1B＞ε ̃0B. By definition, this relation is equivalent to －(D̃1
B
i)/ 

(∂D̃1
B
i/∂pi

B
)＜－(D̃0

B
i)/(∂D̃0

B
i/∂pi

B
)(＝(－P̃B＋(bB－b0

B
)＋t(δ＋Δ))/2). Hence, 

1                                 D̃1
B
i

  [P̃B＋(bS－b0
S
)＋τ(δ＋Δ)－c]＞－          .

3                             ∂D̃1
B
i/∂pi

B
  

The left side of the preceding equation is clearly an increasing func- 

tion of p
B. The right hand side is a decreasing function of PB. (Claim 1 

below.) This situation establishes that a unique price P̂B exists, which  

is strictly smaller than P̃
B, such that (1/3)[P̂B＋(bS－b0

S
)＋τ (δ＋Δ)－c]＝  

－(D̂1
B
i)/(∂D̂1

B
i/∂pi

B
). This equation, in turn, suggests P̂S＝(1/3)[－2P̂B＋(bS

－b0
S
)＋2c＋τ(δ＋Δ)]＞(1/3)[－2P̃B＋(bS－b0

S
)＋2c＋τ(δ＋Δ)]＝P̃S and P̂＝(1/ 

3)[P̂
B＋(bS－b0

S
)＋2c＋τ(δ＋Δ)]＜(1/3)[P̃B＋(bS－b0

S
)＋2c＋τ (δ＋Δ)]＝P̃.

By reversing the sign, the ε ̃1B＝ε ̃0B and ε ̃1B＜ε ̃0B cases can be proven.

For the second part of the theorem, symmetric prices are assumed. 

Then, from Equations (14) and (15), 

                    1       
D1

B
i＝             {－PB＋(bB－b0

B)＋t(δ＋Δ)}.              (51)
               A－avg(v(D1

B
i))         

Similarly, the following relation holds under symmetric prices according 

to Lemma 1.(i): 

                    ∂D1
B
i         2A－3v’(D1

B
i)                     

     ＝－                      .                 (52)
                    ∂pi

B
     (A－v’(D1

B
i))(A－3v’(D1

B
i))          

Thus,

      D1
B
i       A－v’(D1

B
i)     A－3v’(D1

B
i)               

－         ＝{              } {            } {－PB＋(bB－b0
B)＋t(δ＋Δ)}. (53)

 ∂D1
B
i/∂pi

B
   A－avg(v(D1

B
i))  2A－3v’(D1

B
i)              

Given that －(D0
B
i)/(∂D0

B
i/∂pi

B
)＝(1/2){－PB＋(bB－b0

B
)＋t(δ＋Δ)}, direct 
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calculation shows that the necessary condition for (i) to occur (i.e., －(D̃1
B
i)/ 

(∂D̃1
B
i/∂pi

B
)＜－(D̃0

B
i)/(∂D̃0

B
i/∂pi

B
)) is equivalent to 

    (2A－6v’(D̃1
B
i))

A－             (A－v’(D̃1
B
i))＞avg(v(D̃1

B
i)). 

    2A－3v’(D̃1
B
i))

Moreover, 

    (2A－6v’(D1
B
i))

A－             (A－v’(D1
B
i))＞v’(D1

B
i) 

    (2A－3v’(D1
B
i))

always holds. If v”(z)＝0, ∀z∈[0, 1] then avg(v(D1
B
i))≡v’(D1

B
i). The second 

part of the proof is now completed.                                  □

Claim 1. －(D1
B
i (P

B, PB))/(∂D1
B
i (P

B, PB)/∂pi
B
) is a decreasing function of 

P
B. 

Proof. Without losing generality, let i＝1, j＝2. 

  d                    1   
    (D11 (PB, PB)‧{－           })
dP

B               ∂D1
B
1 (PB, PB)

                               
                       ∂p1

B   

   ∂D1
B
1 (PB, PB)  ∂D1

B
1 (PB, PB)         1   

＝[{            ＋            }‧{－            }]                (54)
      ∂p1

B
          ∂p2

B
        ∂D1

B
1 (PB, PB)

                                              
                                      ∂p1

B

               ∂D1
B
1 (PB, PB)    ∂2D1

B
1 (PB, PB)  ∂2D1

B
1 (PB, PB) 

＋[D1
B
1 (PB, PB)‧{             }－2‧{            ＋            }].

                   ∂p1
B
            ∂p1

B2
       ∂p1

B
∂p2

B

Consider the first brackets in Equation (54). As observe from (41),  

(∂D1
B
2)/(∂p1

B
)＝(∂D1

B
1)/(∂p2

B
) holds because (∂D0

B
2)/(∂p1

B
)＝(∂D0

B
1)/(∂p2

B
)

＝1/A. Thus, by summing Equations (40) and (41), and then evaluating 

the resulting equation at p1
B
＝p2

B
＝PB, we obtain 

                        ∂D1
B
1 (PB, PB)  ∂D1

B
1 (PB, PB)         

            ＋            ,                    (55)
                         ∂p1

B         ∂p2
B

                         1    3   
                       －  {1－  v’(D1

B
2 (PB, PB))}         

                         A     A         
＝                                                                     ＜0. (56)
       2                  2                v’(D1

B
1(P

B
, P

B
))v’(D1

B
2 (P

B
, P

B
))

  ({1－  v’(D1
B
1(P

B, PB))}{1－  v’(D1
B
2(P

B, PB))}－                         
     A                  A                            A2 
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The preceding inequality follows Assumption 1. Moreover, based on 

Lemma 1(i), {－1/(∂D1
B
1 (PB, PB)/∂p1

B
)}＞0, which implies that the first 

term in the bracket is negative.

Now, consider the second brackets. By summing Equations (40) and 

(41), we obtain 

∂D1
B
1 (p1

B
, p2

B
)  ∂D1

B
1 (p1

B
, p2

B
)           

             ＋             
     ∂p1

B          
∂p2

B      

(57)
                            1    3    
                          －  ＋  v’(D1

B
2 (p2

B
, p1

B
))           

                            A    A
2
         

＝                                                                        .
      2                  2                 v’(D1

B
1 (p1

B
, p2

B
))v’(D1

B
2 (p2

B
,p1

B
))

  {1－  v’(D1
B
1(p1

B
,p2

B
))}{1－  v’(D1

B
2 (p2

B
, p1

B
))}－                            

      A                  A                              A
2

Differentiating Equation (57) with respect to p1
B
 and evaluating the 

resulting equation at p1
B
＝p2

B
＝PB, we obtain

∂
2 D1

B
1 (PB, PB) ∂2D1

B
1(P

B, PB)
                          
    ∂p1

B2       ∂p1
B∂p2

B 

                3               ∂D1
B
2 (PB, PB))

  (HD (p1
B
, p2

B
)‧{   v”(D1

B
2 (PB, PB))             }              

                A2                   ∂p1
B

＝                                           
                      HD

2
 

       1         1     3                ∂HD (PB, PB)
＋            ‧[   {1－  v’(D1

B
2 (PB, PB))}]‧            ,       (58)

  HD (p1
B
, p2

B
)}2   A    A                    ∂p1

B

where 

                 2                    2      
HD (p1

B
, p2

B
)≡{1－  v’(D1

B
1 (p1

B
, p2

B
))}{1－  v’(D1

B
2 (p2

B
, p1

B
))}

                 A                    A        

             v’(D1
B
1 (p1

B, p2
B))v’(D1

B
2 (p2

B, p1
B))

          －                             ＞0. 
                         A2

Given that v”≤0 and (D1
B
2)/(∂p1

B
)＞0 based on Lemma 1(ii), the first 

term on the right side of Equation (58) is nonpositive.

For the second term on the right side of the equation, note first that 

1/({HD (p1
B
, p2

B
)}2)‧[(1/A){1－(3/A) v’(D1

B
2 (PB, PB))}]＞0 based on Assumption 

1. Moreover, we can demonstrate that (∂HD (PB, PB))/(∂p1
B
)＜0 as follows: 
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∂HD (PB, PB)
           
   ∂p1

B

   ∂       2   
＝     (1－  {v’(D1

B
1 (p1

B, p2
B))＋v’(D1

B
2 (p2

B, p1
B))}

  ∂p1
B     

A

     3          
  ＋  v’(D1

B
1 (p1

B, p2
B))v’(D1

B
2 (p2

B, p1
B)))|p1

B
＝p2

B
＝PB

    A2

     2        ∂D1
B
1         ∂D1

B
2     3         ∂D1

B
1      

＝－  {v”(D1
B
1)       ＋v”(D1

B
2)       }＋  {v”(D1

B
1)       v’(D1

B
2)     

    A         ∂p1
B           ∂p1

B    A2         ∂p1
B 

           ∂D1
B
2   

  ＋v”(D1
B
2)       v’(D1

B
1)}

           ∂p1
B  

    2         ∂D1
B
1  ∂D1

B
2    3               ∂D1

B
1  ∂D1

B
2    

＝－  v”(D1
B
1)‧(     ＋     )＋  v”(D1

B
1)v’(D1

B
1)‧(    ＋     )

    A         ∂p1
B
   ∂p1

B
    A2              ∂p1

B
   ∂p1

B
   

            ∂D1
B
1  ∂D1

B
2  1     3

＝－v”(D1
B
1)‧(    ＋     )[  {2－  v’(D1

B
1)}],

            ∂p1
B   ∂p1

B  A     A     

where the third equality applies the fact that under symmetric prices 

p1
B＝p2

B＝PB, v’(D1
B
1)＝v’(D1

B
2) and v”(D1

B
1)＝v”(D1

B
2). Recall from Equation 

(56) that (∂D1
B
1)/(∂p1

B)＋(∂D1
B
2)/(∂p1

B)＝(∂D1
B
1)/(∂p1

B)＋(∂D1
B
1)/(∂p2

B)＜0. 

According to Assumption 1, (1/A){2－(3/A) v’(D1
B
1)}＞0. Moreover, v”≤0. 

Therefore, we conclude that (∂HD (PB, PB))/(∂p1
B
)≤0. In addition, the se- 

cond term on the right side of Equation (58) is also nonpositive.

Given that both the first and the second terms on the right side of 

Equation (58) are nonpositive, (∂
2D1

B
1 (PB, P B))/(∂p1

B2
)＋(∂2D1

B
1 (PB, PB))/

(∂p1
B
∂p2

B
)≤0. When this result is combined with D1

B
1 (PB, PB)‧{(∂D1

B
1 (PB,

PB))/(∂p1
B
)}－2＞0, we conclude that the term in the second brackets in 

Equation (54) is nonpositive.

Given that the term in the first brackets in Equation (54) is negative 

and that in the second brackets is nonpositive, 

 d                     1
    (D11 (PB, PB)‧{－            })＜0. 
dPB               ∂D1

B
1 (PB, PB)   

                               
                        ∂p1

B

The proof of Claim 1 is thus completed.                             □
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F. Appendix 6

Theorem 3.

Proof. Without losing generality, fix i＝1. In equilibrium, the buyer- 

side and seller-side demands of platform 1 depend only on prices of this 

platform because the market for platform 1 is separated from that of 

platform 2. However, given that platforms 1 and 2 are symmetric, the 

equilibrium prices chosen by the two platforms agree with one another. 

Thus, subscript i is simply dropped in the prices, which are denoted as 

P
B*, PS*, and P*≡PB*＋PS*.

The threshold x̄M1 in Figure 7 can be solved by solving 

                             Δ
{bB＋v(D1

B
1
* (PB*))}－PB*－t(x̄M1＋  )＝0,

                             2

which yields x ̄M1＝(1/t)[{bB＋v(D1
B
1
*
(PB*))}－PB*－(Δ/2) t].

Moreover, x ̄L is derived by solving 

          Δ                                Δ
b0

B
－t(x ̄L＋  ＋δ )＝{bB＋v(D1

B
1
*
(PB*))}－PB*－t(－  －x ̄L),

          2                                2

which yields x ̄L＝(1/2t)[PB*－(bB－b0
B
)－v(D1

B
1
*
(PB*))－t(δ＋Δ)].

Thus, buyer-side demand for platform 1 is implicitly defined by 

            1 
D1

B
1
*
(PB*)＝      (x̄M1－ x ̄L)

          2δ＋Δ    

          1       
        ＝  [3{bB＋v(D1

B
1 (PB*))－PB*}＋(－b0

B
＋tδ )].

          A  

Following a similar logic, seller-side demand for platform 1 is defined 

by 

             1   
D1

S*
(PS*)＝       (ȳM1－ȳL)

          (2δ＋Δ)

          1      
       ＝  [3(bS－PS*)＋(－b0

S
＋τδ )].

          A   

The FOCs for the maximization problem of platform 1 are given by 
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             1     3v’ (D1
B
1
*
)  

P
B*＋PS*－c＝  {1－         }[3{bB＋v(D1

B
1
*
)－PB*}＋(－b0

B
＋tδ )],     (59)

             3        A    

                           1
PB*＋PS*－c＝  [3(bS－PS*)＋(－b0

S＋τδ )].              (60)
                           3  

Equilibrium prices are denoted as P̂
B*, P̂S*, and P̂*≡P̂B*＋P̂S*.

As a benchmark, the case with no direct network effect (i.e., v(z)＝0,

∀z∈[0, 1]) is considered. In this case, the FOCs are given by 

                        1
P

B*＋PS*－c＝  [3(bB－PB*)＋(－b0
B
＋tδ )],                (61)

                         3  

                         1
P

B*＋PS*－c＝  [3(bS－PS*)＋(－b0
S
＋τδ )].                (62)

                         3

The equilibrium prices in the benchmark case are denoted as P̃
B*, P̃S*, 

and P̃
*≡P̃B*＋P̃S*.

In both cases, PB*＋PS*－c＝(1/3)[3(bS－PS*)＋(－b0
S
＋τδ )] holds. By rear- 

ranging the terms, this equation is rewritten as 6PS*＝3(bS－PB*＋c)＋  

(－b0
S＋τδ ). Substituting this equation into Equations (59) and (61) yields 

                               3v’(D̂1
B
1
*)

3(P̂
B*＋bS－c)＋(－b0

S
＋τδ )＝2{1－        }

                                  A
(63)

                          [3{bB＋v(D̂1
B
1
*
)－P̂B*}＋(－b0

B
＋tδ )],

3(P̃B*＋bS－c)＋(－b0
S
＋τδ )＝2[3(bB－P̃B*)＋(－b0

B
＋tδ )],        (64)

where Equations (63) and (64) are evaluated at the corresponding equi- 

librium prices, respectively.

Henceforth, the logic of the proof is exactly same as that of Theorem 

1 and the proof will only be sketched. First, by using the definition of 

D1
B
1
*, the right sides of Equations (63) and (64) can be rewritten as 

follows. 

     3v’(D1
B
1
*
)        

2{1－        }[3{bB＋v(D1
B
1
*
)－PB*}＋(－b0

B
＋tδ )]＝2[A‧D1

B
1
*
－3v’(D1

B
1
*
)D1

B
1
*
], (65)

        A           

2[3(b
B－P̃B*)＋(－b0

B
＋tδ )]＝2[A‧D1

B
1
*
－3v’(D1

B
1
*
)].             (66)
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For a given price PB*, 2[A‧D1
B
1
*
－3v’(D1

B
1
*
)D1

B
1
*
]≥2[A‧D1

B
1
*
－3v’(D1

B
1
*
)] is 

equivalent to (v(D1
B
1
*
))/(D1

B
1
*
)≥v’(D1

B
1
*
), which always holds via the con- 

cavity of v(‧). Thus, we can conclude that 

      3v’(D̃1
B
1
*
)

2{1－        }[3{bB＋v(D̃1
B
1
*
)－P̃B*}＋(－b0

B
＋tδ )]＞2[3(bB－P̃B*)＋(－b0

B
＋tδ )].

         A    

Second, given that 3(P
B*＋bS－c)＋(－b0

S＋τδ ) is an increasing function 

of PB*, the proof is completed by showing that 

           d        3v’(D1
B
1
*
)        

    (2{1－        }[3{bB＋v(D1
B
1
*
)－PB*}＋(－b0

B
＋tδ )])＜0,

         dP
B*          A      

which is confirmed true.                                             □

G. Appendix 7

Theorem 4.

Proof. By using Equation (49) in Appendix 5, the closed form equili- 

brium prices of the model in Section IV can be calculated as follows: 

       A－3η                             1
                                              
       2A－3η                             3
P̂B＝             {(bB－b0

B
)＋t(δ＋Δ)}＋             (－1)

     1   A－3η                      1   A－3η
      ＋                             ＋           
     3  2A－3η                      3   2A－3η

(67)
    {(bS－b0

S
)＋τ(δ＋Δ)－c}, 

P̂S＝1/3[－2P̂B＋(bS－b0
S
)＋2c＋τ(δ＋Δ)].             (68)

Given that (∂/∂η )((A－3η )/(2A－3η ))＝－3A/((2A－3η )2)＜0, an increase 

in η  reduces the weight of the first term in Equation (67) and increases 

that of the second term. This situation clearly reduces P̂
B, and thus, 

increases P̂S. Using the same argument in the proof of Theorem 2, the 

overall price P̂ decreases.                                             □

H. Appendix 8

Theorem 5.

Proof. Differentiating Equation (67) with respect to τ yields (∂P̂B)/  

(∂τ )＝－(1/3)/(1/3＋(A－3η )/(2A－3η ))(δ＋Δ). For any η＞0 that satisfies 
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Assumption 1, this value is smaller than that of the benchmark case (η
＝0)(∂P̃B)/∂τ＝－2/5(δ＋Δ), which is smaller than 0. Thus, for any 

given η＞0, an increase in τ reduces P̂B more severely than in the case 

η＝0, which implies that the variations of P̂S and P̂ are also larger 

under direct network effect.                                          □

I. Appendix 9

Theorem 6.

Proof. A≡(2δ＋Δ)2t, and thus, (∂/∂t)((A－3η )/(2A－3η ))＝((2δ＋Δ) 

6η )/((2A－3η )2)＞0. Therefore, increments in t increases both the weight 

of the first term in Equation (67) and the first term itself, which results 

in higher P̂B. This situation clearly reduces P̂S and increases P̂.

Denote G≡(A－3η )/(2A－3η ) and H≡(∂/∂t)((A－3η )/(2A－3η ))＝((2δ
＋Δ)6η )/((2A－3η )2)(＞0). By rearranging Equation (67), the following is 

obtained:

 1                              1   
{  ＋G}P̂B＝G{(bB－b0

B
)＋t(δ＋Δ)}＋  (－1){(bS－b0

S
)＋τ(δ＋Δ)－c}.

3                              3  

Differentiating the preceding equation with respect to t and rear- 

ranging its terms yield 

∂P̂
B     H                              G      

    ＝        {(bB－b0
B)＋t(δ＋Δ)－P̂B}＋        (δ＋Δ)

∂t    1/3＋G                        1/3＋G

         H       1          
   ＝       [(       ){(bB－b0

B
)＋t(δ＋Δ)＋(bS－b0

S
)＋τ(δ＋Δ)－c}]   (69)

      1/3＋G  1＋3G           

         G
    ＋        (δ＋Δ).
      1/3＋G

Note that (∂P̃
B)/∂t＝(3/5)(δ＋Δ). The last term in Equation (69) is 

evidently smaller than (∂P̃
B)/∂t＝(3/5)(δ＋Δ) if η＞0. However, the first 

term in Equation (69) is positive, and thus, the relative sizes of (∂P̂B)/

∂t and (∂P̃B)/∂t remain ambiguous.                                 □
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