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Several studies on mixed oligopoly indicate that the ownership 

pattern of firms does not affect the equilibrium price. This idea often 

suggests that ownership is irrelevant. In a mixed duopoly under 

price competition, firm ownership is irrelevant. This study reveals 

that ownership is irrelevant in a single publicly owned firm and in 

any positive number of privately owned firms. However, if two or 

more publicly owned firms exist, then ownership becomes relevant 

in a homogeneous good market with a strictly increasing convex 

cost schedule and a downward sloping demand curve. If firms set 

the price sequentially and if the lone public firm is a price leader, 

then social welfare is constantly greater than when the latter is a 

price follower. The unique price is the competitive price when the 

public firm moves first in the sequential game.
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I. Introduction 

In recent years, numerous studies have investigated mixed oligopoly 

markets where public and private firms co-exist. In such a market, 

privately owned firms maximizing profit compete with publicly owned 

firms. In particular, the standard practice in the literature has been to 

consider the maximization of social welfare as the objective of publicly 

owned firms. Social welfare is often characterized as the sum of pro- 

ducer and consumer surpluses. Although the mixed oligopoly market is 

similar to oligopoly market, the essential difference lies in the objective 

of a few firms, namely, public firms. Evidence of mixed oligopoly can be 

observed in the market for products in the oil and gas, telecommuni- 

cation, and iron and steel sectors.1

From De Fraja, and Delbono (1989), numerous studies on mixed oli- 

gopoly have assessed the quantity competition among firms, including 

(Delbono, and Denicolo 1993; Freshtmanm 1990; Fjell, and Heywood 

2002; Fjell, and Pal 1996; Han, and Ogawa 2008; Majumdar, and Pal 

1998; Pal, and White 1998; Nett 1994; Matsumura 1998). Most of the 

results related to quantity competition in mixed oligopoly have indicated 

that social welfare may increase when the objective of publicly owned 

firms is to maximize profit as well.

Other studies have analyzed government interventions, through quan- 

tity (output) subsidy, in the mixed oligopoly context. White (1996) con- 

cluded that ownership is irrelevant if the optimal subsidy quantity is 

provided before and after the privatization of public firms. If private 

oligopoly in a situation where public firms have been privatized is not 

subsidized, then social welfare falls. Poyago-Theotoky (2001) extended 

this result for a sequential move game where the public firm is the 

Stackelberg leader. Myles (2002) extended White (1996) result for a 

general inverse demand function and aconvex cost function. Another 

strand of literature on mixed oligopoly studies the government’s optimal 

shareholding in firms. Huang, Lee, and Chen (2006) suggested that the 

government should adopt a strategy of mixed oligopoly when a public 

firm’s production cost is less than or equal to that of a private firm, or 

1 For example, in the telecommunication sector in India, Mahanagar Telephone 

Nigam Limited and Bharat Sanchar Nigam Limited are public sector firms, 

whereas Bharti Airtel, TATA Telecommunications, and Reliance Communications 

are private sector firms operating in this country. Other similar examples are 

observed in the oil and gas sector, as well as the iron and steel industry.
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at a threshold level. Thus, the government should privatize the public 

firm when this firm’s production cost is considerably high.

The endogenous timing of public and private firms’ actions in quantity 

competition has also been analyzed. Pal (1998) argued that a public firm 

should be a price follower and produce zero quantity. Thus, a public 

firm’s credible threat of entry is sufficient for the enhancement of welfare. 

Lu (2006) extended the aforementioned result by including foreign private 

firms. Matsumura (2003) showed that in a duopoly market, a public firm 

should be the leader in equilibrium if the other firm is a foreign private 

firm and a follower if the other firm is a domestic firm.

Ogawa, and Kato (2006) examined the price competition2 in a homo- 

geneous good mixed oligopoly market, and established that ownership 

is irrelevant. The set of equilibrium prices is the same as that of the 

Bertrand competition for quadratic cost function. Under certain conditions 

in private firm leadership, the equilibrium price exceeds that of the sim- 

ultaneous move game. Price is constantly low in the case of a public firm 

leadership. Dastidar, and Sinha (2011) analyzed the price competition 

between a public and a private firm in a homogeneous good market. The 

aforementioned researchers showed that ownership is irrelevant in a 

homogeneous good duopoly market in a general setup characterized by 

a downward sloping demand function and a strictly increasing convex 

cost function. If both firms are publicly owned, then the equilibrium set 

is a superset of the set of equilibria in a mixed oligopoly. In a sequential 

move game, if the public firm is a price leader, then the equilibrium 

price is the same as that of the competitive equilibrium. Moreover, if 

the private firm is a price leader, then the outcome is the same as that 

of the collusive outcome.

Our analysis closely follows Dastidar, and Sinha (2011). We have ex- 

tended the duopoly model to oligopoly by retaining the general downward 

sloping demand function and a strictly increasing convex cost function. 

Moreover, we demonstrate that if a sufficient number of public firms is 

present out of the total number of firms, then the irrelevance of owner- 

ship may not hold. In this paper, Section I discusses the model used in 

this study. Section II presents the results. Section III analyzes the out- 

come when firms set price sequentially.

2 Studies have investigatedprice competition in differentiated good mixed oli- 

gopoly market. However, we are not reviewing these studies because we are 

analyzing the homogeneous market.
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II. Model

Suppose m firms (m＞2) are present, with each one producing a homo- 

geneous product. The firms compete among themselves in terms of price. 

First, we analyze the equilibrium strategy of the firms when all of them 

are privately owned. The privately owned firms intend to maximize their 

profits. The firms have to supply the quantity demanded at a price. The 

firms setting the same price will share the quantity of goods supplied 

equally among them.

Thereafter, we introduce a few public firmsout of the m firms in the 

market. These publicly owned firms aim to maximize social welfare. Sup- 

pose that n̅, (n̅＜m) publicly owned firms are present. We analyze the 

effect of an increase in the number of publicly owned firms (more than 

n̅) on the outcome in terms of strategies, that is, the set of Nash equilibria.

The demand function of the market is denoted as follows:

D(p)＝Q twice continuously differentiable.

A unique p
max exists, such that D(pmax)＝0. A unique Qmax also exists, 

such that D(0)＝Qmax and D’(p)＜0, ∀p∈(0, pmax).

The cost function of each firm is assumed to be the same. The nature 

of the cost function of each firm is given as follows:

C(x) is twice continuously differentiable and has the following pro- 

perties, C(0)＝0, C’(Q)＞0, C"(Q)＞0, and C’(0)＜p
max.

If p is the lowest price set by all the privately owned firms (n≥1) in 

the market, then we define the profit of each privately owned firm (n

≥1): 

π − ∈( ) ( )( ) = ( ), [0, ]maxD p D pp p C p p
n n .

The social welfare in the case when n≥1 firms set the lowest price p 

is defined asfollows: 

π+∫( ) = ( ) ( )
maxp

p
W p D x dx n p
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The equilibrium is necessarily non-unique (Dastidar 1995) in the case 

of the Bertrand competition between two firms in a homogeneous pro- 

duct market. We show that if a few (more than one) publicly owned firms 

are present in a homogeneous product market serviced by a total of m 

firms, then the set of equilibrium prices is the same as the set of equi- 

librium prices in the Bertrand competition among m privately owned 

firms. Suppose that n* publicly owned firms are present in the m firms 

market. Thereafter, we show that if n* increases, keeping m fixed (e.g. 

private firms being nationalized), then the range of equilibrium prices 

shrinks. Thus, the range of equilibrium prices depends on the number 

of publicly owned firms.

III. Results

Lemma 2.1

i) ∃ ∈ˆ  [0, )max
munique p p , such that π =ˆ ( ) 0.m p

ii) ∃ ∈  [0, )max
munique p p , such that ( ) ( ).m p pπ π=

iii) ( ) ( )m p pπ π>  if and only if mp p< .

iv) The range of the Bertrand equilibria is ∈ ˆ[ , ]m mp p p  when m firms 

are present.

Proof. See Dastidar (1995) pages 22 to 27 for the proofs.

Lemma 2.1 provides the equilibrium strategies of each firm when all 

of the m firms are privately owned.

Lemma 2.2

> > ∀ ∈ˆ ˆ( ) ( ) ( ), [0, ).max
m nW p W p W p p p

Proof. Suppose − < ∀ ∈ˆ ( ) ( ) 0, [0, ).max
nW p W p p p

            

            
⇒ − − + <( )( ) ( ) ( ) ( ( )) 0.D ppD p nC pD p C D p

n

            
⇒ − <( )( ( )) ( ) 0.D pC D p nC

n
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By assumption, we know that the C(‧) function is convex.

               

− −
⇒ >

−

( ) ( )( ( )) ( ) ( ) (0)
.( ) ( )( 1)

D p D pC D p C c c
n n

D p D pn
n n

               
⇒ − > −( ) ( )( ( )) ( ) ( 1) ( ).D p D pC D p C n C

n n

               
⇒ − >( )( ( )) ( ) 0.D pC D p nC

n

The aforementioned inequality is a contradiction because n̅＞1.

∴ − ∀ ∈ˆ ( ) ( ) > 0, [0, ).max
nW p W p p p

Suppose −ˆ ˆ( ) ( ) < 0.m nW p W p

          

          
⇒ − − + <( ) ( ) ( ) ( )( ) ( ) 0.D p D p pD p D pmp mC n nC

m m n n

          
⇒ − <( ) ( )( ) ( ) 0.D p D pnC mC

n m

We know that the C(‧) function is convex.

                

− −
⇒ >

( ) ( )( ) (0) ( ) (0)
.( ) ( )

D p D pC C C C
n m
D p D p
n m

                
⇒ − >( ) ( )( ) ( ) 0.D p D pnC mC

n m

The aforementioned inequality is a contradiction because m＞n̅.

∴ − > ∀ ∈ˆ ˆ( ) ( ) 0, [0, ).max
m nW p W p p p
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Thus, > > ∀ ∈ˆ ˆ( ) ( ) ( ), [0, ).max
m nW p W p W p p p

From Lemma 2.2, we can see that the social welfare is an increasing 

function of the number of firms setting that same price.3

Lemma 2.3  W (p) is maximized at p̅, Wn̅̂(p) is maximized at pn̅, and  

Wm̂(p) is maximized at pm.

Proof. 
π+

=
∫( ( ) ( ))( ) .

maxp

p
d D x dx pdW p

dp dp

       ′ ′ ′= − + + −( ) ( ) ( ) ( ( )) ( ).D p D p pD p C D p D p

       ′ ′= −( )( ( ( ))).D p p C D p

For ′ ′< ⇒ >( ( )), ( ) 0p C D p W p  because ′ < ∀ ∈( ) 0, (0, ).maxD p p p

For ′ ′> ⇒ <( ( )), ( ) 0p C D p W p  because ′ < ∀ ∈( ) 0, (0, ).maxD p p p

                 ′ ′⇒ = = =( ) 0 at ( ( )) .W p p C D p p

Following the same argument, ′ ′= = =( )ˆ ( ) 0, for ( ) nn

D pW p p C p
n

 and 

′ ′= =( )ˆ ( ) = 0, for ( ) .m m
D pW p p C p
m

We have derived the prices at which social welfare is maximized for 

different numbers of firms setting the lowest price. Evidently,

′ ′ ′= > = > =( ) ( )( ( )) ( ) ( )n m
D p D pp C D p p C p C
n m

because ′ ⋅ > ∀( ) 0, .C Q

Lemma 2.4  ∃ <  ,unique n n m , such that 

3 We obtain this result by relaxing the assumption C(0)＝0 to C(0)≥0 as well. 

However for simplicity, we opt to retain the assumption.
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−
′=

−

( )( ( )) ( ) ( )( ).( )( 1)

D pC D p C D pm CD p nm
m

Proof. C(‧) is convex; thus,

                   

−
′>

−

( )( ( )) ( ) ( )( ).( )( 1)

D pC D p C D pm CD p mm
m

                   

−
′<

−

( )( ( )) ( )
( ( )).( )( 1)

D pC D p C
m C D pD pm

m

Furthermore, ′′ < ∀( ) 0, .C Q Q

,1 ,n n m⇒ ∃ < <  such that

−
′=

−

( )( ( )) ( ) ( )( ),( )( 1)

D pC D p C D pm C nD p nm
m

is unique.

Suppose n̅ is not unique; thus, n ̆ is another real number, such that

                   

−
′=

−

( )( ( )) ( ) ( )( ).( )( 1)
(

D pC D p C D pm CD p nm
m

                   
′ ′⇒

( ) ( )( ) = ( )(
D p D pC C
n n

This result is possible only when ′′ ⋅ >= because ( ) 0.(n n C

Therefore, n̆＝n̅, n̅ is unique.

Thus, n̅ is the number of publicly owned firms. The number (n̅) of 

publicly owned firms out of them total number of firms is such that 
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−
′=−

( )( ( )) ( ) ( )( ).( 1)( )

D pC D p C D pm Cm nD p
m

This condition implies that n̅＞1.

Lemma 2.5  For 

Proof. Suppose

              
− − + =( ) ( )( ) ( ) ( ( )) ,pD p D pC pD p C D p e

m m

              
′ =( )such that > 0, at = ( ) .n
D pe p C p
n

              

−
⇒ − = +( ) ( 1)( ( )) ( ) ( ) .D p mC D p C pD p e

m m

              

−
⇒ = +− −

( )( ( )) ( )
.( 1) ( 1)( ) ( )

D pC D p C em pm mD p D p
m m

We determine from Lemma 2.4 that 

                 

−
′=−

( )( ( )) ( ) ( )( ).( 1)( )

D pC D p C D pm Cm nD p
m

We have assumed
 

′= = ( )( ).n
D pp p C
n

          

−
⇒ = +− −

( )( ( )) ( )
.( 1) ( 1)( ) ( )

n
n

n

n n

D pC D p C em pm mD p D p
m m

This result is not possible because 
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−
′

−

( )( ( )) ( ) ( )= ( ) = .( 1)( )

n
n

n
n

n

D pC D p C D pm C pm nD p
m

                

We know p̅m is unique and π ̂m(p̅m)－π (p̅m)＝0. From Lemma 2.5, we 

obtain p̅m＝pn̅. Suppose pn is such that Wn̂(p) is maximized. Wn̅̂(p) is 

maximized at pn̅. For 1≤n＜n̅,  

                           
>( ) ( )D p D p

n n

and C’(‧)＞0 are implied. Therefore, pn＞pn̅ for 

                           
′= ( )( )n
D pp C
n

and 

                           
′= ( )( ).n
D pp C
n

Similarly, for m＞n＞n̅, we obtain pn＜pn̅.

We will show that ∃kn̅, kn̅∈[0, pmax), such that Wn̅̂(pn̅)＝W ̂m(kn̅). As n ̅
＜m; thus, W ̂m(p)＞Wn̅̂(p), ∀p∈[0, pmax). At pmax, Wn̅̂(p

max)＝0 and W ̂m(pmax)

＝0. Wn̅̂(p) is maximized at pn̅. W ̂m(p) is maximized at pm. pm＜pn̅. W ̂’m(p)

＜0, for p＞pm. Therefore, a unique p＝kn̅ exists, such that Wn̅̂(pn̅)＝W ̂m 

(kn̅). This result implies that kn̅＞pn̅. kn, 1＜n＜m is a price, such that  

Wn̂(pn)＝W ̂m(kn).

Lemma 2.6  ∃unique n*, with m＞n*＞n̅, such that W ̂n*(pn*)＝W ̂m(kn*) and 

kn*＝pn̅＝p̅m.

Proof. We have shown the existence of p̅m in Lemma 2.1. From 

Lemma 2.5, we have obtained pn̅. We know that p̅m＝pn̅. Now, fix n*, 

such that kn*＝p̅m＝pn̅.
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                > ∀ ∈* *
ˆ ˆ( ) ( ), [0, ).max
m n nnW k W k p p

                ′ < = >* *
ˆ ( ) 0, because .m n n m mW k k p p

Therefore, n* constantly exists, such that W ̂n*(pn*)＝Wm̂(kn*), where W ̂n*(p) 

is maximized at pn*. ⇒ m＞n*＞n̅.

n* is unique because W ̂’m(p)＜0, for p＞pm, Wn̂1
(p)＞Wn̂2

, ∀p∈[0, p
max

), 

and n1＞n2.

We obtained n*, such that Wm̂(kn*)＝W ̂n*(pn*). Suppose n* is the number 

of publicly owned firms out of the m firms. We have increased the 

number of publicly owned firms from n̅ to n*. The number of privately 

owned firms is m－n*＝l. We will first analyze the best response of the 

n* publicly owned firms.

The best response function of each publicly owned firms is defined by 

the function 

              
1 *: [0, ] [0, ], 1, 2... .max m max

it p p i n− =a

ti(p)＝pn*, for each i＝1, ..., n*, where p is a vector, if pmin＞kn*, and pmin is 

equal to the lowest price set by any one of the l private firms. If the 

lowest price set by the private firm is pmin, pmin＞kn*, then the public 

firms will set a price p. p＝pn* because for p＞kn*, W ̂n*(pn*)＝W ̂m(p).

ti(p)＝{pn*, kn*}, if pmin＝kn*, ∀i＝1, ..., n* because at p＝kn*, W ̂n*(pn*)＝W ̂m 

(kn*); thus, each public firm will be indifferent between setting p＝pn* or 

p＝kn*.

ti(p)＝p, if pmin＜kn*, ∀i＝1, ..., n* because for p＜kn*, W ̂n*(pn*)＜Wm̂(p); 

thus, each public firm will quote the same price p.

Proposition 2.1  Given m firms, out of which n* firms are publicly 

owned and m－n*＝l are privately owned, the set of Nash equilibria in 

price competition among all the firms is [pm̂, kn*＝pn̅＝pm̅].

Proof. We have obtained the best response function for each of the 

publicly owned firms. The best response of the privately owned firms is 

as follows:

             ˆ( ) ,  [ , ], for each 1, ... .j m mS p p if p p p j l= =
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This response is the Bertrand range of m firms. We know that p̅m＝pn̅＝

kn*.

Therefore, the set of Nash equilibria in the price competition among 

n* public firms and m－n*＝l private firms is the same as the set of 

Nash equilibria in the price competition in m privately owned firms.

Remarks:

i) For 0＜n≤n*, ⇒ pn≥pn*, where pn maximizes W ̂n(p) and pn* maxi- 

mizes Wn̂*(p), the set of Nash equilibria in the price competition among 

n publicly owned firms and m－n privately owned firms is the same as 

the set of Bertrand equilibria in m privately owned firms. Therefore, in 

the case where m－1 private firms and one public firm are present, the 

set of equilibria is the same as the set of equilibria in m firms’ Bertrand 

competition.

ii) For > > ⇒ <*
*, n n

m n n p p

⇒ kn＜kn*, where pn maximizes Wn̂(p), pn* maximizes Wn̂*(p), kn is such 

that W ̂pn
(pn)＝W ̂m(kn), and kn* is such that W ̂pn*

(pn*)＝W ̂m(kn*); the set of 

Nash equilibria in the price competition of n publicly owned firms and 

m－n privately owned firms is a subset of the set of the Bertrand 

equilibria in m privately owned firms. [p ̂m, kn]⊂[p ̂m, p̅m]. Therefore, the 

range shrinks.

The upper bound of the set of equilibrium prices decreases when the 

number of public firms among the total number of firms increases. 

Social welfare is higher when the number of public firms increases above 

a threshold level, and the firms quote the upper bound of the set of 

pure strategy Nash equilibrium price. Firms may charge considerably 

high prices, which are also equilibrium strategies, when the number of 

public firms is below a threshold level.

IV. Sequential Move Game

In this section, we compute the set of pure strategy Nash equilibria 

when firms set prices in a sequential order. We assume that one public 

firm and (m－1) private firms are present. We consider two cases: (1) all 

(m－1) private firms move first and the public firm is the second mover, 

and (2) the public firm moves first and all (m－1) private firms move 

second.
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A. Case 1

From Lemma 2.1, we know that π ̅m(p)≥π (p), ∀, p＜p̅m. The range of 

Bertrand equilibria is p∈[p ̂m, p̅m]. We know from Lemma 2.3 that W(p) 

is maximized at p0＝c’(D(p)) and from Lemma 2.4 that 

                       
′> =0

( )( ).m
D pp p c
n

Suppose pmin is equal to the minimum of the price set by (m－1) 

private firms in stage I (as the first mover). If pmin≤p0＝c’(D(p0)), then 

the best response of the public firm is to set p＝pmin because W’(p)＞0, 

for p＜p0. Thus, the public firm will not undercut the price. We under- 

stand that if pmin≤p0, then the public firm in stage II (public firm as the 

second mover) will constantly set the same price, which is the minimum 

of the price set by private firms. If pmin＞p0, then the best response of 

the public firm is to set p＝p0 because W(p) is maximized at p＝p0.

We know that p2̅ exists, such that

            
π π= − ≥ = −2

( ) ( ) ( ) ( )( ) ( ).
2 2m

pD p D p pD p D pc c
m m

We obtain p̅2 in a similar manner as in Lemma 2.1. From the strict 

convexity of the cost function, we also obtain p̅2＜p̅m following the same 

argument as in Lemma 2.4. Consider a private firm j that sets price pj 

in stage I and pmin＝Min{pi}, ∀i≠j is the minimum of the price set by all 

other private firms in stage I. Suppose p̅2＜pmin≤p0, then the best re- 

sponse for firm j is to set price pj＜pmin because π m(p)＜π2(p), ∀p＞p̅2. 
The public firm will always set p＝pj because pj＜p0. In stage I, the 

firms undercut the prices if any firm sets a price higher than p̅2. If any 

firm in stage I sets p≤p2̅, then the best response for other firms in this 

stage is to set the same price. The argument is the same as in Propos- 

ition 2.7. The public firm in stage II will also set the same price because 

p̅2＜p0. Thus, we determine that the set of pure strategy subgame perfect 

Nash equilibria is to set the same price pi∈[p ̂m, p̅2], ∀i. An interesting 

result is that [p ̂m, p̅2]⊂[p ̂m, p̅m].

B. Case 2

We know from Lemma 2.3 that Wm̂(p) is maximized at pm. This pm is  
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−
′= = −

( )( ( )) ( )( )( ) and .1( )( )
m m

D pc D p cD p mp c p mm d p
m

We know that c(‧) is strictly an increasing convex function. Thus, we 

obtain

               

−
′= > =−

( )( ( )) ( ) ( )( ).1( )( )
m m

D pc D p c D pmp p cm md p
m

The public firm sets p＝pm in stage I. All the (m－1) private firms set 

this same pm price in stage II because π ̅m(p)＞π (p), ∀p＜p̅m. Thus, we 

determine that a unique pure strategy Nash equilibrium exists, such 

that the public firm sets p＝pm in stage I and all the (m－1) private firms 

set the same price in stage II. A unique pure strategy subgame perfect 

Nash equilibrium exists in this two-stage game.

V. Conclusion

This study shows that in the presence of a single publicly owned firm 

operating along with any positive number of privately owned firms with 

price as the strategic variable, then the ownership pattern of firms is 

irrelevant. Hence, the set of equilibrium prices does not depend on the 

ownership pattern. When more than two firms are operating in a market 

and if a certain number of firms are publicly owned, then the set of 

equilibrium prices is a subset of the set of equilibrium prices in the 

Bertrand competition. The upper bound of the set of equilibrium prices 

is considerably low, that is, the set of equilibrium prices shrinks. This 

result implies that the ownership pattern matters when a sufficiently 

large number of publicly owned firms are operating alongside privately 

owned firms. Firms may probably chargesignificantly high prices when 

the number of public firms isnot sufficiently high, that is, not above a 

threshold level.

If the prices are set sequentially and if the public firm is the first 

mover (price leader), then a unique pure strategy subgame perfect Nash 

equilibrium exists. This unique price is the competitive equilibrium price 

when m firms service the market. If the public firm moves second, then 
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we obtain a range of equilibrium prices.The upper bound of this range 

is less than the upper bound of the equilibrium prices in the Bertrand 

competition in m private firms. The pure strategy subgame perfect Nash 

equilibrium is necessarily non-unique.

(Received 27 August 2014; Revised 23 September 2015; Accepted 8 

October 2015)
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