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We consider existence and stability in a simple version of Lee et 

al. (2005). For a sufficiently large discount factor, a steady state of 

full ― support wealth distribution and pure strategy exists, whereas 

for an intermediate discount factor, a steady state of mixed strategy 

exists. Both steady states are locally stable and determinate. All de- 

nominations are circulated in the mixed-strategy steady state, whereas 

larger denominations are not held in the other steady state. We also 

show that nonfull-support steady states exist, and are stable and in- 

determinate. This finding is in sharp contrast to that of Huang, and 

Igarashi (2014), which show instability of nonfull-support steady states 

in Lee et al. (2005)
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I. Introduction

Lee et al. (2005) are the first to model the denomination of currency 

and the trade-off between carrying cost and flexible transaction oppor- 

tunities that a small denomination permits. A suitable framework to 

model that trade-off is a model in which money is essential and indivi- 

sible. Therefore, Lee et al. (2005) therefore build their model based on 

Zhu, who, in turn, extended Trejos, and Wright (1995) to a larger wealth 

set. Each date has a portfolio choice stage in which individuals can 
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choose what form they want to hold their wealth (e.g., one $5 vs. five 

$1's), which is followed by a standard matching and trading stage. Lee 

et al. (2005) rule out several methods to avoid carrying costs, such as 

the electronic payment system in Huang et al. (2015). In such an en- 

vironment they show existence of steady states. We show more detailed 

existence and stability results in a simple version of their framework. 

Lee et al. (2005) allow for an arbitrary bound on wealth. We provide 

an analysis of stability in the simplest case, where the bound is 2. In 

this economy, people's wealth is in set {0, 1, 2}, and there are only two 

denominations, namely, $1 and $2 bills. Despite its simplicity, this 

setup has all the essence of Lee et al. (2005). In particular, when an 

individual who has wealth 2 chooses his portfolio, he encounters a 

trade-off or dilemma of denomination. That is, while choosing one $2 

bill incurs less carrying cost than choosing two $1 bills, this choice 

may lead to a loss of trading opportunity; if he meets a seller without a 

$1 bill, he will not have the option to spend only $1 because the seller 

cannot offer change. 

We study the full-support steady states, in which wealth distribution 

has support {0, 1, 2}. Full-support steady state has two types, one sup- 

ported by a pure strategy and the other by a mixed strategy. In the 

pure-strategy steady state, all the wealth is held in the form of $1 bills 

and no one holds a $2 bill, which serves as an example in which the 

largest unit (e.g., $100 bill in the US) does not circulate. In the mixed- 

strategy steady state, both types of bills circulate. Considering that Lee 

et al. (2005) do not respond whether the smallest units and larger units 

can circulate at the same time in equilibrium, the above mixed-strategy 

steady state provides the first example in which a larger unit essentially 

matters. Finally, both types of full-support steady states are shown to 

be stable and determinate. To the best of our knowledge, our approach 

to the stability of the mixed-strategy steady state is different from existing 

literature.

We also consider two types of non-full-support steady states, in which 

wealth distribution has support {0, 2}. One type involves converting $1s 

into $2s, whereas the other involves discarding $1s. Both types are 

stable. The economy, deviating slightly from one type, can jump back to 

it by discarding $1 bills, whereas the economy, deviating from the other 

type, can gradually converge to the other by means of converting all 

$1s into $2s. This effect is in sharp contrast to the case of zero carrying 

cost, where the dilemma of denomination does not occur. Specifically, 

Huang, and Igarashi (2014) show that such gradual convergence is im- 
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possible for the non-full-support steady state in Zhu.

II. Model

The model is identical to Lee et al. (2005) and has two stages at each 

date: the portfolio choice stage followed by the pairwise matching stage.

The model is identical to Lee et al. (2005) and has two stages at each 

date: the portfolio choice stage followed by the pairwise matching stage.

Let s＝(s1, s2, ..., sK) be a denomination structure of money, where sk 

is the size of the k-th smallest denomination. Assume sk－1＜sk and that 

sk/s1 is an integer. We normalize s1 to be 1 and impose a bound on 

individual nominal wealth Z for technical purposes. Denote the set of 

nominal wealth Z＝{1, ..., Z}. Let m∈(0, 1) be the per capita wealth 

divided by the bound Z. The time discount factor is β∈(0, 1), and the 

period utility is (c)－q－γ ∑k yk, where c∈R＋ is the amount of consump- 

tion, q∈R＋ is the amount of production, and γ≥0 is the utility cost of 

carrying money of any size from the portfolio choice stage to the pair- 

wise stage. Function u: R＋→R＋ has all nice properties: u(0)＝0, u’ (∞)

＝0, u’＞0, u”＜0, and sufficiently large but finite u’(0).

In the portfolio choice stage, agents can choose any portfolio of mon- 

etary items within their wealth. Define the set of feasible portfolios, Y＝
{y＝(y1, ..., yk)∈R＋

K
: sy≤Z}, where yk is the integer quantity of size-sk 

money. Let Γ1(z) be a subset of probability measures on the feasible 

portfolios of nominal wealth less than z:

Γ1(z)＝{σ 1: σ 1(y)＝0,  if  sy＞z}.                (1)

Let ht: Y→R be the value function that gives the expected discounted 

utility of entering pairwise meetings at date-t with portfolio y, and let 

w
t: {0, 1, ..., Z} →R be the utility of entering date t with wealth z. Hence, 

the optimization problem at the portfolio stage is

w
t(z)＝maxσ

1
∈Γ

1
(z) ∑σ 1(y)ht(y)                   (2)

Denote the set of maximizers in Equation (2) by Δ1
t
(z). Equation (2) 

implies that agents can choose any portfolio in Γ1(z) at no cost. And we 

then allow sy＜z in Equation (1). Hence free discarding of money is 

allowed at this stage. In the pairwise meeting, agents become a buyer 

(the partner becomes a seller) with probability 1/n. With probability 1－
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(2/n), the match is a no-coincidence meeting. In single-coincidence meet- 

ings, the buyer makes a take-it-or-leave-it offer. This offer consists of 

production amount, the monetary items the buyer should transfer, and 

the monetary items the seller should transfer (“change”). Randomization 

is allowed. However, with risk-averse agents, the optimal production 

amount is degenerated. Define the set of feasible wealth transfers from 

the buyer with y to the seller with y’:

X(y, y’)＝{x∈[0, Z－sy’]: x＝s(v－v’), 0≤v≤y, 0≤v’≤y’},       (3)

where the inequalities are about vector comparison. Given any transfer 

of monetary wealth x∈X(y, y’), the optimal production is

q
t(x)＝βwt＋1(x＋sy’)－βwt＋1(sy’).               (4)

Let Γ2(y, y’) be the set of all probability measures on X(y, y’). The 

problem in pairwise trade between a buyer with y and a seller with y’ 
at date t is

f
t(y, y’)＝maxσ

2
∈Γ

2
(y, y’) Eσ2

[u(qt(x))＋βwt＋1(sy－x)],          (5)

where randomization over monetary payments is allowed. Denote the 

set of maximizers in Equation (5) by Δ2
t
(y, y’).

Let π t be the probability measure on Z, such that π t(z) is the fraction 

of each type with wealth z at the start of date t. Let θ t be the pro- 

bability measure on Z, such that θ t(y) is the fraction of each type with 

portfolio y right after the portfolio stage at date t. These distributions 

and value functions must satisfy all the laws of motions and the Bellman 

Equations in Lee et al. (2005):

                     N－1             1
h

t(y)＝－γ ∑k yk＋      β wt＋1(sy)＋   ∑y’∈Y θ t(y’) f t(y, y’)       (6)
                       N               N

               1
π t＋1∈{π : π (z)＝   ∑(

⃞

y, y’) θ t(y)θ t(y’)[σ (y, y’)(sy－z)＋σ (y’, y)(z－sy)]
               N    

(7)
  N－2
＋     ∑sy＝z θ t(y), with σ (y, y’)∈Δ2

t
(y, y’), for all (y, y’)∈Y ×Y} 

    N

θ t∈{θ : θ (y)＝∑z π t(z)σ z(y), with σ z∈Δ1
t(z), for all z∈Z}.       (8)
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When a non-stationary, dynamic equilibrium is considered, the initial 

condition π0, which is the distribution of wealth prior to the portfolio 

stage at t＝0, is given.

Definition 1: Given π0, an equilibrium is a sequence {(θ t, π t, wt)}t
∞
＝0 that 

satisfies conditions (1)-(8). A tuple (θ , π , w) is a monetary steady state if 

(θ t, π t, wt)＝(θ , π , w) for t≥0 is an equilibrium and w≠0. Pure-strategy 

steady states are ones where both Δ1(z) and Δ2(y, y’) are singletons1 for 

all z∈Z and (y, y’)∈Y ×Y. Other steady states are called mixed-strategy 

steady states.

In other words, pure-strategy steady states have a unique optimal 

choice in the portfolio stage and in all pairwise meetings. Mixed-strategy 

steady states can have degenerate mixed strategies, but they must have 

multiple optimal choices in both stages. Next, we define stability.

Definition 2: A steady state (θ , π , w) is locally stable if there is a 

neighborhood of π  such that for any initial distribution in the neighbor- 

hood, there is an equilibrium path such that (θ t, π t, wt)→ (θ , π , w). A 

locally stable steady state is determinate if for each initial distribution 

in this neighborhood, there is only one equilibrium that converges to 

the steady state.

III. Full-support steady states

The economy we analyze has wealth bound Z＝2; hence the per capita 

wealth is 2m. Hereafter, we use superscripts for date and subscripts for 

state on portfolio holding or wealth holding. Consequently, wealth dis- 

tribution is π＝(π0, π1, π2), and the value function of holding monetary 

wealth at the beginning of the portfolio choice stage is summarized in 

w＝(w0, w1, w2). The denomination structure of the economy is {$1 bill, 

$2 bill}. The beginning of the pairwise stage has four possible individual 

states: Y≡{0, $1, 2$1s, $2}, where $1 and $2 represent the holding of 

one $1 bill and one $2 bill respectively; and 2$1s represents the holding 

of two $1 bills. Consequently, the distribution and value function over 

these four states are θ＝(θ0, θ1, θ11,θ2) and h＝(h0, h1, h11, h2) respectively, 

where the subscripts 1, 11, and 2 indicate $1, 2$1s, and $2, respect- 

1 If both Δ1(z) and Δ2(y, y’) are singletons, both the optimal trades in Equation 

(1) and (5) are degenerated.
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ively. The normalization u(0)＝0 and the buyer take-it-or-leave-it offer 

imply w0＝h0＝0.

A (b, s)-meeting is a meeting between a buyer with state b∈Y and a 

seller with state s∈Y. Trade and positive production may occur in five 

types of meetings: ($1, 0)-meeting, ($1, $1)-meeting, ($2, $1)-meeting, 

($2, 0)-meeting, and (2$1s, 0)-meeting. Notice that in the ($2, $1)-meeting, 

the buyer can transfer exactly $1 by the seller offering change. (2$1s, 

$1)-meeting and ($2, $1)-meeting share the same set of possible trading 

opportunities in terms of transferring nominal wealth. (2$1s, 0)-meeting 

has more possible trading opportunities than ($2, 0)-meeting. In other 

meetings, buyers with two $1 bills have the same trading opportunities 

as those with one $2 bill.

For all the steady states of our interest, θ0＝π0, θ1＝π1 and θ11＋θ2＝

π2. The Bellman equations are as follows

    n－1＋π2      π0                    π1
h1＝         βw1＋   max{u(βw1), βw1}＋   max{u(βw2－βw1), βw1}－γ 
        n           n                     n

     n－1＋π2      π0
h11＝         βw2＋   max{u(βw2), u(βw1)＋βw1, βw2}
         n           n     

(9)
     π1
   ＋   max{u(βw2－βw1)＋βw1, βw2}－2γ
      n

    n－1＋π2      π0                    π1
h2＝         βw2＋   max{u(βw2), βw2}＋   max{u(βw2－βw1)
        n           n                     n

  ＋βw1, βw2}－2γ,

and

                        w1＝max{h1, 0}
(10)

                        w2＝max{h11, h2, 0},

where the max operators correspond to decision problems in the portfolio 

and pairwise stages. 

Disposing $1s does not happen in some steady states, namely, steady 

states with full-support wealth distribution. Two such steady states in- 

clude one with a pure strategy and one with a mixed strategy. Tables 1 

and 2 show the equilibrium strategies, the bill chosen by the agents at 

the portfolio choice stage, and the offers of the buyer to the seller at the 

pairwise stage. In the mixed strategy, randomization occurs in the port- 
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Portfolio stage Always choose $1 bills

Pairwise

stage

Seller’s wealth

0 1 2

Buyer’s

wealth

0 \ \ \

1 $1 $1 \

2 $1 $1 \

TABLE 1

PURE STRATEGY

Portfolis

stage

Randomize over 2$1s and 1$2 if

Wealth is 2; choose $1 otherwise

Pairwise

stage

 
Seller’s wealth

0 1 2

Buyer’s

wealth

0 \ \ \ \

1 \ $1 $1 \

2
2$1s $1 $1 \

1$2 $2 $1 \

TABLE 2

MIXED STRATEGY

folio choice stage (i.e., h11＝h2) but not in the pairwise stage. Particularly, 

agents with wealth 2 randomize over two $1 bills and one $2 bill in the 

portfolio stage. Those who choose to hold one $2 bill offer $2 in a ($2, 

0)-meeting, and those who choose to hold two $1 bills offer only $1 in 

a (2$1s, 0)-meeting.

Proposition 1: The pure-strategy steady state exists for β  and γ that 

are sufficiently close to one and zero, respectively, while the mixed- 

strategy steady state exists for β  of intermediate size and γ sufficiently 

close to zero. Both steady states are locally stable and determinate. 

Moreover, the convergence to the pure-strategy steady state is gradual 

whereas that to the mixed-strategy steady state is by means of a jump 

in one period. Neither convergence involves the disposal of money.

In the pure-strategy steady state, $2 bills do not circulate, so it serves 

as a model description of the circumstances that the largest bill (e.g., 

the US $100 bill) does not circulate. Our mixed-strategy steady state 
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serves as an example in which small bills and large bills co-exist. While 

Lee et al. (2005) show the existence of a steady state in the general 

model, they do not tell what bills are actually circulating in that steady 

state. Our existence about the two steady states, though in a simpler 

model, suggests that discount factor $\beta$ play a role in getting all 

denominations circulated.

IV. Nonfull-support steady states

Two steady states with non-full-support distribution exist. The equi- 

librium paths convergent to them will be the model description of public 

abandonment of the smaller denominations. To describe these non-full- 

support steady states, consider the following equation, which is equivalent 

to the last equation in (9) if we let w2＝h2＝x, π1＝0, and max {u(βw2), 

βw2}＝u(βw2). That is 

                     n＋m－1      1－m
x＝         βx＋      u(βx)－γ.                (11)

                         n           n

Figure 1 depicts the RHS of (11) of different values of γ. The highest 

curve corresponds to the case of γ＝0. As long as u’(0) is large enough 

to satisfy the condition for the existence of steady state in Trejos, and 

Wright (1995)

                                 n(1－β )
u’(0)＞        ＋1,

                                 β (1－m)

this curve crosses the 45 degree line twice, and Equation (11) has two 

solutions, w̅＞0 and w＝0. 

As γ increases, the curve is shifted downward, and the two solutions 

become positive and move toward each other (Figure 1). Eventually, 

these two solutions merge at some value w*, when γ reaches some γ *＞

0. In this process, u(βw̅－βw}) decreases to zero, while βw increases 

from zero. Hence, there exists γ ’∈(0, γ *) such that u(βw̅－βw)＝βw.

Based on the tangency in Figure 1, w* is the unique solution to

                  n＋m－1   1－m
               β＋      u’(βw*)β＝1.                  (12)

                     n         n
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FIGURE 1

γ ON EQUATION (11)

By assuming that the curve in Figure 1 tangent to 45 degree line at 

w* is sufficiently concave, we can make sure that ((1－m)/n)βw*＜γ *, 

which in turn implies Equation (19) when γ＝γ *. Letting x＝w and 

rearranging the terms in Equation (11) implies the following:

             (1－β )n＋2－2m   1－m
                     w＝     [u(βw)＋βw]－γ.             (13)

                    n             n

As γ increases in Figure 1, the LHS of Equation (19) increases as w; 

hence, the LHS of Equation (13) increases, while the RHS of Equation 

(19) decreases as w̅ increases. Overall, Equation (19) holds when γ ∈[0, 

γ *]. The following conditions are derived:

($1, $1)-meeting when γ∈(γ ’, γ *)  u(βw̅－βw)＜βw        (14)

($1, $1)-meeting when γ∈(0, γ ’)  u(βw̅－βw)＞βw         (15)

($1, 0)-meeting                   u(βw)＞βw              (16)

($2, $1)-meeting             u(βw̅－βw)＞βw̅－βw        (17)

($2, 0)-meeting                    u(βw̅)＞βw̅            (18)
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Portfolio stage Always choose $2 bills if possible

Pairwise

stage

 
Seller’s wealth

0 1 2

Buyer’s

wealth

0 \ \ \

1 $1 $1 \

2 $2 $1 \

TABLE 3

γ∈(0, γ ’)

                         1－m                  1－m
$2 vs. 2$1s          [u(βw)＋βw]－γ＜      u(βw̅)      (19)

                           n                      n

When γ ∈(0, γ ’), a nonfull-support steady state exists with w1＝h1＝w, 

w2＝h2＝w̅, π＝(1－m, 0, m) and the Table 3 strategy. h11 is defined by 

the second equation in (9). Equation (15)-(18)2 are the optimal conditions 

in the corresponding meetings. Equation (19) is the optimal condition of 

choosing a $2 over two $1s.

When γ ∈(γ ’, γ *), a steady state exists with the same formulas w1＝h1

＝w, w2＝h2＝w̅, and π＝(1－m, 0, m). However, the optimal strategy is 

the Table 4 strategy, which is different from the above steady state. In 

particular, with Equation (14), no trade occurs in the ($1, $1)-meeting.

When γ ∈(0, γ *), another non-full-support steady state exists with w1

＝0, h1＝－γ, w2＝h2＝w̅, π＝(1－m, 0, m) and Table 5 strategy. h11 is 

defined by the second equation in (9). w1＝0 implies that one $1 is not 

valued by a seller with 0 wealth. And meeting other potential sellers, 

namely those with one $1, has zero probability. There is no benefit of 

carrying only one $1, and it will be discarded to avoid carrying cost. An 

argument similar to the above implies the optimality of other parts of 

Table 5 strategy.

Then, stability about these steady states is considered. This paragraph 

involves two possible ways that the economy with initial distribution 

different from that of a steady state reaches the steady state. One is to 

jump to the steady state in one period, which possibly involves some 

people discarding some money at the initial date. The other convergent 

path involves people converting all $1s into $2 gradually.

Consider perturbing the distribution of Table 3 steady state while 

2 u(βw̅)＞βw̅ because otherwise Equation (11) will be violated. Thus, Equation 

(16)-(18) hold.
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keeping the total money stock constant. This is essentially a transfer 

payment that moves $1 from the richest to the poorest in the model. 

Because it is strictly optimal to pay a $1 in ($1, $1)-meetings and 

convert the two $1s into one $2 at the steady state, because it is 

strictly optimal to do so at the steady state, when the perturbation is 

sufficiently small. This process has a peculiar property that we call 

unit-root convergence.

That is, as π1 approaches zero, the frequency of ($1, $1)-meetings 

reaches zero much faster; as a result, the convergence becomes extremely 

slow in the end. Nevertheless, such convergent path to the steady state 

exists. As proof, we derive a difference equation system of three variables 

(π1
t
, w1

t
, w2

t
) and study the three eigenvalues of its linearization around 

the steady state. The stable manifold is shown to be two-dimensional 

(2D).3 Given that the initial condition is one-dimensional (1D), that is, 

π1
0
 only has one initial condition, a continuum of equilibrium paths 

converging to the steady state exists. This steady state is concluded to 

be locally stable and indeterminate.4 Note that this local stability is not 

evident. When γ＝0, such a convergent equilibrium does not exist. As 

the proposition of Huang, and Igarashi (2014) implies, the non-full-support 

steady state becomes unstable when γ＝0. 

Consider the above perturbation on the Table 4 steady state. Reserving 

a $1 is strictly preferred in ($1, $1)-meetings at the steady state, and is 

thus also strictly preferred for a sufficiently small perturbation. Each 

$1 never meets another $1; hence, those $1s cannot be converted into 

$2s. The economy does not converge to this non-full-support steady state.

Consider injecting a sufficiently small proportion of $1s into the Table 5 

steady state. In other words, a positive proportion of agents with 0 

wealth receive $1s. Those receiving two $1s will convert them to a $2 

bill immediately. Those with only one $1 will discard it at the initial 

date to avoid carrying cost because discarding it is strictly optimal at 

the steady state; therefore, it is also sufficiently optimal near the steady 

state. The economy “jumps” in one period back to the non-full-support 

steady state with a lower stock of money because a proportion of $1s is 

discarded.5

3 Refer to the matrix computation in the Appendix.
4 This indeterminacy has some resemblance to that of a non-monetary steady 

state of an overlapping generation model of fiat money with no carrying cost.
5 This jump is possible even if γ＝0. However, when γ＝0, discarding money is 

a weakly dominated strategy. In addition, the jump by discarding when γ＝0 will 

be eliminated by introducing even a tiny cost for discarding.
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Portfolio stage Always choose $2 bills if possible

Pairwise

stage

 
Seller’s wealth

0 1 2

Buyer’s

wealth

0 \ \ \

1 $1 0 \

2 $2 $1 \

TABLE 4

γ∈(γ ’, γ *)

These results are summarized in the following proposition. The detailed 

proof is in Section V.

Proposition 2: Let γ ∈(0, γ *). A non-full-support monetary steady state 

exists with w1＞06; it is locally stable (gradual convergence) and inde- 

terminate. If γ ∈(0, γ ’), and then it becomes unstable if γ ∈(γ ’, γ *). 

A non-full-support monetary steady state with w1＝0 exists; if a 

positive proportion of wealth-0 agents receive only one $1, the economy 

can jump to it in one period by discarding all $1s, making it locally 

stable and determinate. 

V. Proof Outlines

Express π0
t
 and π1

t
 in terms of π1

t
 using ∑i

2

＝0 π i
t
＝1 and ∑i

2

＝0 iπ1
t
＝2m:

                                      π1
t      π1

t

(π0
t
, π2

t
)＝(1－m－   , m－   )

                                       2       2
(20)

where π1
t
∈Π≡[0, 2min {m,1－m}].

Let κ t be the probability of paying $1 in the ($1, $1)-meetings, and η t 

the probability that an agent with wealth 2 chooses two $1 bills at the 

portfolio stage in period t. Then the law of motion is

 

                    2(π1
t)2    2         π1

t      π1
t

π1
t＋1
＝π1

t
－      κ t＋  (1－m－   )(m－   )η t           (21)

                       n      n         2       2

Under the conjecture that (i) discarding of money does not occur, 

that (ii) $1 is transferred in ($1, 0)-meetings and in ($2, $1)-meetings, 

6 When γ＝γ ’, both Tables 3 and 4 can be the strategy.
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and that (iii) a positive amount of money is transferred in ($2, 0)-meetings, 

the Bellman equation, defined on W≡{(w1, w2)|0≤w1≤ w2}, is expressed 

as follows:

     n－1＋π2
t        π0

t            π1
t

w1
t
＝         βw1

t＋1
＋   u(βw1

t＋1
)＋   max{u(βw2

t＋1

        n              n            n
(22)

  －βw1
t＋1

), βw1
t＋1

}－γ

          n－1＋π2
t

     w2
t
＝         βw2

t＋1

              n

        
＋ 1 1 10 0

1 1 2max [ ( ) ] , ( )
t t

t t tu w w u w
n n
π πβ β γ β+ + +⎧ ⎫

+ −⎨ ⎬
⎩ ⎭              

(23)

          π1
t    

        ＋   u(βw2
t＋1
－βw1

t＋1
)＋βw1

t＋1
－γ

           n

The max operator in Equation (23) compares the option of carrying 

two bills and paying only one $1 with that of carrying only one bill and 

paying a $2 in ($2, 0)-meetings.

Proof of Proposition 2: Consider γ ∈(0, γ ’), such that κ t＝1 and η t＝0 

hold sufficiently near the steady state. The dynamics resemble that for 

the non-full-support steady state in the model without a denomination 

structure (i.e., γ＝0). The Jacobian of the dynamical system is identical 

to that of Proposition 5 by Huang, and Igarashi (2015), except that γ＞0 

leads to a different steady-state value w. Through a similar computation, 

out of the three eigenvalues of the Jacobian of Equation (21)-(23), one 

eigenvalue from Equation (21) is unity, another is smaller than 1, and 

the other is greater than 1. Equation (21) implies a unit root convergence 

(see Figure 2 in Huang, and Igarashi (2015)) and that the stable manifold 

is 2D.

When γ ∈(0, γ ’), the steady state w is an interior point of W. Then the 

standard approach (i.e., studying the dimension of the stable manifold) 

applies. The two-dimensional stable manifold and one initial condition 

imply local stability and indeterminacy.

The proof for the stability of the pure-strategy steady state is standard. 

We derive a difference equation system of three variables (π1
t, w1

t, w2
t), 

obtain the three eigenvalues of the Jacobian at the steady state, and 

show that the stable manifold is 1D. (This implies a unique path because 

we have only one initial condition.) The mixed-strategy steady state shows 
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Portfolio stage Always choose $2 bills if possible

Pairwise

stage

 
Seller’s wealth

0 1 2

Buyer’s

wealth

0 \ \ \

1 $1or 0 $1 \

2 $2 $1 \

TABLE 5

γ∈(0, γ *)

that if the initial distribution is sufficiently close to that of the steady 

state, the economy can jump to the steady state by choosing appropriate 

randomization in the initial portfolio stage. To ensure that this con- 

vergence by jump is the only equilibrium path to the mixed-strategy 

steady state, the possibility of gradual convergence is ruled out. Such a 

convergent path will have to preserve the indifference condition for the 

mixed strategy along the path. By applying z-transform to the dynamical 

system, we show that preserving the indifference is generically not pos- 

sible.

Proof of Proposition 1: The existence of the steady states is shown by 

a guess and verify process. We impose the strategies in Tables 1 and 2 

on Equations (21)-(23) and show that the resulting (π , w) is consistent 

with the optimality conditions for the strategies:

($1, $1)-meeting                    u(βw̅－βw)＞βw               (24)

($1, 0)-meeting                        u(βw)＞βw                  (25)

 

($2, $1)-meeting                  u(βw̅－βw)＞βw̅－βw            (26)

                              π0                     π0
2$1s or $2 and paying it       [u(βw1)＋βw1]－γ＞   u(βw2)     (27)
                              n                     n

                                π 0                     π0
2$1s or $2 and keeping it        [u(βw1)＋βw1]－γ＞   βw2      (28)
                               n                     n

Inequality Equation (27) means that choosing to carry two $1s and 

offering only $1 in (2$1s, 0)-meetings is at least as good as choosing to 
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carry one $2 and offering $2 in ($2, 0)-meetings. Inequality Equation 

(28) means that choosing to carry two $1s and offering only $1 in (2$1s, 

0)-meetings is better than choosing to carry one $2 and reserving $2 in 

($2, 0)-meetings. Equation (27) must maintain equality or the mixed- 

strategy steady state and a strict inequality for the pure-strategy steady 

state. The proof of existence is similar to that in Huang, and Igarashi 

(2014). It consists of three lemmas provided in the Appendix. Strict 

inequalities are important for the following stability analysis because 

the analysis guarantees that the inequalities also hold in the vicinity of 

the steady state.

The stability analysis for the pure-strategy steady state is standard. 

The 3 × 3 Jacobian is derived for the difference equation system (21)- 

(23), which is evaluated at the steady state. Then, we show that one 

eigenvalue from Equation (21) is smaller than 1, and the other two 

eigenvalues are greater than 1, making the stable manifold 1D.7 This 

result shows the local stability and determinacy of the pure-strategy 

full-support steady state.

The stability of the mixed-strategy full-support steady state is twofold.

For the model without denomination or carrying cost, Huang, and 

Igarashi (2014) first show that if the initial distribution is close to that 

of the mixed-strategy full-support steady state, then the economy can 

reach the steady state in one period by people coordinating in the initial 

randomization. The same logic applies to our setting with carrying cost. 

Here, we show that such “jump” is the unique convergent path by 

ruling out the possibility of a gradual convergence. For that purpose we 

show that when the distribution gradually goes to that of the steady 

state, Equation (27) generically does not hold with equality.

Let Δη (z), Δπ1(z), and Δw(z) be the z-transforms8 of {Δη t}0
∞
, {Δπ1

t
}0
∞
, 

and {Δwt}0
∞
, respectively, where the Δs in the latter indicate the deviation 

from the steady-state values. The RHS of the law of motion Equation 

(21) and Bellman Equations (22)-(23) are denoted by Φ and φ  respective- 

ly, and Φη, Φπ, φπ, and φw denote their derivatives with respect to the 

subscript variable evaluated at the steady state. By linearizing the equal- 

ity condition in Equation (27) and conditions Equations (21)-(23) with 

respect to (π1
t
, wt, η t) at the steady-state value (π , w, η ) and applying the 

z-transforms, we obtain the following:

7 Refer to the Appendix for the matrix computation.
8 The z-transform of a sequence of numbers {yt} is Y(z)＝∑t

∞
＝0 yt/zt. Refer to 

sections 8.2-8.4 in Luenberger (1979) for a detailed discussion.
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[u’(βw1)＋1][Δw1(z)－Δw1
0
]＝u’(βw2)[Δw2(z)－Δw2

0
]          (29)

0
1 11 1

0

( )
[ ] ( ) ,

( ) 0
z

Iz A z z
w z w

ηπ π
η−

⎡ ⎤⎛ ⎞ΦΔ Δ⎛ ⎞⎛ ⎞
= − Δ +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦           (30)

where A
1 is the Jacobian of Equation (48) with (π , w) being the mixed- 

strategy steady state and ζ＝1.

With Equation (29) and multiplying Equation (30) by (0　u’(βw1)＋1　－u’ 
(βw2)), we obtain

   

0
11

1 2 0
(0 ( ) 1 ( ))adj[ ] ( )

0
u w u w Iz A z z

w
η π

β β η
⎡ ⎤⎛ ⎞Φ Δ⎛ ⎞

′ ′+ − − Δ +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

             ＝(z－Φπ)|Iz－φ－w
1)|{[u’(βw1)＋1]Δw1

0
                  (31)

             －u’(βw2)Δw2
0
},

where adj [Iz－A
1] is the adjoint matrix of Iz－A1. With the form of A1, 

manipulating the algebra produces the first term in the LHS of (31) 

equal to Δη (z) times －(u’(βw1)＋1　－u’(βw2)) adj (z－φ－w
1)φ－w

1 φπ Φη, which 

has a nonzero constant generically because the shape of function u can 

be modified so that u’(βw1) and u’(βw2) can be arbitrarily changed with- 

out modifying u(βw1) and u(βw2). Equation (31) holds as an identity 

only if Δη (z)＝Δη 0. For any z, Equation (30) holds; if we let z＝0, the 

unique path has       ＝－(A1)－1      Δη 0, with Δπ1
0 given by the initial 

condition, and Δη t＝Δπ1
t
＝Δw1

t
＝Δw2

t
＝0 for all t≥1. This condition rules 

out a gradual convergence to the mixed-strategy steady state.

(Received 4 September 2014; Revised 2 October 2015; Accepted 10 

November 2015)

Appendix

Supplementary materials for the detailed proofs (mainly for Proposition 

1) are presented. Consider the following form of conditions Equation 

(27) and Equation (28):

                                         n
Portfolio stage           [u(βw1)＋βw1]－   γ＞u(βw2)             (32)
                                         π0

0
ηΦ⎛ ⎞

⎜ ⎟
⎝ ⎠

0
1
0w

π⎛ ⎞Δ
⎜ ⎟⎜ ⎟Δ⎝ ⎠
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                                           n
2$1s vs. $2               [u(βw1)＋βw1]－   γ＞βw2              (33)
                                          π0

Lemma 1: If a monetary full-support steady state exists for a sufficiently 

small γ＞0, then:

i. Equations (24)-(33) hold;

ii. π1 satisfies π1≤π1
*≡                           where inequality is strict 

if and only if η t＜1.

Proof. The proof studies the fixed point of Equations (21)-(23).

(i) Being a monetary steady state implies w2＞0, and having a full- 

support distribution implies π1＞0. Then, Equation (22) implies w1＞0 

for a sufficiently small γ. We call the weak inequality versions of Equa- 

tions (24)-(28), where the only change made in Equations (24)-(28) is 

replacing the strong inequalities by weak ones, and Equations (24)-(28) 

hold at least weakly.

Then, we obtain the following:

Step 1: Any full-support monetary steady state satisfies Equations 

(24)-(28) at least weakly for a sufficiently small γ.

Proof of Step 1

Recall that the probability of paying $1 in the ($1, $1)-meetings is 

denoted by κ  in the main text. First, we want to show κ＞0, and that 

Equation (24) and Equations (32)-(33) hold at least weakly. 

Suppose by way of contradiction, both Equation (24) and Equation 

(25) hold with a reversed weak inequality. We can derive from Equation 

(22) that w1＜0, which contradicts w1＞0.

Suppose by contradiction that Equation (25) and the reversed strict 

inequality in Equation (24) hold. These imply the following:

βw2－βw1＜βw1                          (34)

Note that Equation (25) implies 0＜βw1＜x̅, with x̅ being the positive 

fixed point of u(x). Thus, 0≤βw2－βw1＜x, which in turn implies Equation 

(26) at least weakly. This weak inequality and applying utility function 

u(․) on both sides of Equation (34) give Equation (33) for a sufficiently 

small γ. Given that u is strictly concave and Equation (24) does not 

hold, we have u(βw2)－u(βw1)＜βw1; hence, Equation (32) holds for a 

2( 1 12 (1 ) 1)/3,m m+ − −
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sufficiently small γ＞0. Therefore, an agent with wealth 2 chooses two 

$1s at the portfolio stage (η＝1) for a sufficiently small γ. For π1 to be 

strictly positive in Equation (21), we must have κ＞0 and hence the 

weak Equation (24), a contradiction. 

In summary, Equation (24) holds at least weakly.

Suppose by contradiction that either Equation (27) or Equation (28) 

holds with a reversed strict inequality or η＝0 equivalently. Then, Equation 

(21) implies π1＝0, a contradiction to being a full-support steady state.

Suppose by contradiction that Equation (25) does not hold. Then, the 

weak Equation (24) implies βw2－βw1＞βw1. Combining this with the weak 

Equation (33) gives u(βw1)－(nγ/π0)＞βw1; hence, making Equation (25) 

for a sufficiently small γ a contradiction.

Suppose now by way of contradiction that Equation (26) does not hold 

even weakly: u(βw2－βw1)＜βw2－βw1. Then, the weak Equation (33) for 

a sufficiently small γ implies βw2－βw1＜βw1. However, the weak Equa- 

tion (24) and supposition imply βw2－βw1＞βw1, which is a contradic- 

tion. (End of proof of Step 1)

Step 2: If Equations (24)-(28) hold weakly, then Equations (24)-(26) 

and Equations (28) hold strictly.

Proof of Step 2

When Equations (24)-(28) hold at least weakly, “max” operators can be 

eliminated from Equations (22)-(23). Then, subtracting Equation (22) from 

Equation (23) presents the following:

                      (1－π2)β             n
w2－w2＝                 w1－                 γ,        (35)

                 n(1－β )＋(1－π2)β    n(1－β )＋(1－π2)β

and βw1 satisfies

        β
                 [π0 u(βw1)＋
n(1－β )＋(1－π2)β    

(36)

2
1 1 1

2 2

(1 ) .
(1 ) (1 ) (1 ) (1 )

nu w n w
n n

π β βπ β γ γ β
β π β β π β

⎛ ⎞− − − =⎜ ⎟− + − − + −⎝ ⎠

Suppose by way of contradiction that Equation (24) does not hold. 

Then, we have
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0 0
1 1 1

0 0 0

( )
(1 ) (1 )

nw u w u w
n n

π β γ π ββ β β
β π β π β π β

⎛ ⎞ ⎛ ⎞
≤ − <⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

     

2
1

0 2 0

(1 )+
(1 ) (1 ) (1 ) (1 )

n nu w
n n n

π βγβ γββ
β π β β π β β π β

⎛ ⎞−< +⎜ ⎟− + − + − − +⎝ ⎠

     
2 1

2 0

,
(1 ) (1 ) (1 )

n nu w w
n n

β γββ β γ
β π β β π β

⎛ ⎞
= − + +⎜ ⎟− + − − +⎝ ⎠

where the first inequality is obtained by substituting the supposition 

into Equation (36) and the second is by Jensen's inequality and strict 

concavity of u. For a sufficiently small γ, the above implies that Equation 

(24) holds. 

Inequalities u(βw1)＞u(βw2－βw1)＞βw1＞βw2－βw1, where the first 

and third inequalities are by Equation (35) and the second is Equation 

(24), imply that inequality Equation (28) holds for a sufficiently small γ.

Suppose by way of contradiction that Equation (25) does not hold: 

u(βw1)≤βw1. Then, Equation (24) implies βw2－βw1＞βw1. Combining 

this with Equation (33) produces u(βw1)＞βw1, which is a contradiction. 

Suppose now by way of contradiction that Equation (26) does not hold: 

u(βw2－βw1)≤βw2－βw1. Then, Equation (33) implies βw2－βw1≤βw1. 

However, Equation (24) and supposition imply βw2－βw1＞βw1, which 

is a contradiction. 

In summary, Equations (24)-(26) and Equation (28) hold strictly. (End 

of proof of Step 2)

(ii) Letting κ＝1 in Equation (21) and solving it for π1 yield 

2

1 4 (1 ) .
4 4 - 4 -

m mη η ηπ
η η η

⎛ ⎞
= + − −⎜ ⎟−⎝ ⎠

Here, π1∈[0, π1
*] is strictly increasing in η∈[0, 1] and is equal to π1

* if 

η＝1. ■

Lemma 2: A monetary full-support steady state exists for a sufficiently 

small γ if and only if there exists (π1, x)≫0, such that

0 1 1
2 2

( ) ( , , ),
1 (1 )

nx u x u x n h xδ δ γπ π δ γ π γ
π π β

⎡ ⎤⎛ ⎞
= + − − ≡⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦      

(37)

 ⃞



SEOUL JOURNAL OF ECONOMICS408

and

2 0

(1 ) ( ) ,
(1 )

n nu x u x xδ γδ γ
π β π

⎡ ⎤
+ − ≤ + −⎢ ⎥−⎣ ⎦             

(38)

where

                             (1－π2)βδ＝                  ＜1,                      (39)
                        n(1－β )＋(1－π2)β

and where Equation (38) must hold with equality if π1＜π1
*.

Proof. (Necessity) Based on Lemma 1, inequalities Equations (24)-(28) 

hold for any full-support steady state if γ is sufficiently small. Under 

these inequalities, the Bellman Equations (22)-(23) become Equation (37) 

and Equation (39) with x＝βw1 and (1＋δ )x－(δnγ/((1－π2)β ))＝βw2. Addi- 

tionally, Equation (32) implies Equation (38).

(Sufficiency) The proof resembles a guess-and-verify argument. Suppose 

we have (π1, x), let x＝βw1 and (1＋δ )x－(δnγ/((1－π2)β ))＝βw2. Then, we 

have Equations (35)-(36). The same arguments as step 2 of the proof of 

Lemma 1 show that Equations (24)-(26) and Equation (28) hold, and 

Equation (27) is also given by Equation (38). Therefore, we have Equations 

(24)-(28), where Equation (27) holds with equality if and only if Equation 

(38) holds with equality. When π1＝π1
*, with η＝1 for the full-support 

steady states, the law of motion Equation (21) is satisfied at the steady 

state. When π1＜π1
*, then Equation (38) holds with equality, and any η 

can be optimal. We choose the unique one that solves Equation (21). In 

summary, Lemma 1 trade is optimal. 

Under such strategy, the Bellman Equation (22) and Equation (23) are 

equivalent to Equation (37) and Equation (39), respectively. ■

Lemma 3: A monetary full-support steady state exists for a sufficiently 

small γ＞0 if and only if u’(0)＞(n(1－β ))/(β (1－m))＋1.

Proof. In this proof, δ  is denoted as δ (π1) to make the dependence on 

π1 explicit. First, we show the necessity that Lemma 2 implies Equation 

(37) with x＝βw1. Given that the RHS of Equation (37) is concave in x, 

to have a positive solution for a sufficiently small γ, we must have the 

following:
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1

1 1

10
1 1

2 2

(0, , 0) (0) (0) 1,
1 1

h u J uπ
π π

π δππ δ
π π

⎡ ⎤
′ ′= + ≡ >⎢ ⎥− −⎣ ⎦         

(40)

or equivalently u’(0)＞(1/Jπ1
). Tedious algebra computation produces:

  1    n(1－β )      n(1－β )       π1 n(1－β )＋βπ1 π0
    ＝        ＋1＋                                      
 Jπ1

   β (1－m)         β     [π0 n(1－β )＋(1－π2)
2 β ](2－2m)

(41)
       n(1－β ) 
     ≥        ＋1,  
       β (1－m)

which completes the argument for necessity.

Next, we focus on sufficiency. Notice that Equation (41) holds with 

equality if and only if π1＝0. Then, the assumption implies that h1 (0, 0, 

0)＝J0 u’ (0)＞1. Equivalently, the equation h(x, 0, γ )＝x has two solutions 

for any sufficiently small γ. h1 (x0, 0, γ )＝δ0 u’(x0)＜1, with x0 being the 

larger solution, because h(x, 0, γ ) is concave in x.

When π1＝0, we have

0
0 0 0 0 0 0

2 0

(1 ) ( ) ( )
(1 )

n nu x u x u x xδ γ γδ δ
π β π

⎡ ⎤
′+ − − + <⎢ ⎥−⎣ ⎦

(42)
     u’(x0)δ0 nγ  nγ      nγ   nγ 
  －           ＋   ＜x0－    ＋   ＜x0, 
      (1－π2)β     π0       π0 β    π0

where the first inequality is by concavity of u(․), and the second is by 

δ0 u’(x0)＜1. Two cases are presented below.

Case 1: There exists π ̅1∈(0, π1
*), such that h1(0, π ̅1, 0)＝1 and h1(0, π1,

0)＞1 for all π1∈(0, π ̅1). Then, for any sufficiently small γ, Equation (37) 

has two positive solutions for all π1∈(0, π ̅1). The larger one xπ1
 is consi- 

dered a function of π1.

Then, we have

1

1 1 1 1

1 1

1

0 2
0

( ) (1 )
(1 )

lim lim

nnu x x u x

x

π
π π π π

π π γ
π

δ γγ δ
π π β

→ →

⎡ ⎤
+ − − + −⎢ ⎥−⎣ ⎦ =

1 1 1 1 1 1 1 1 1

1 1 1 1

1 1

( ) [(1 ) ] [(1 ) ]
lim lim

u x x u x x u x x
x x

π π π π π π π π π
π π π π

π π

δ δ δ
→ →

′+ − + − +
< (43)
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1

1 1

1

2

( 1)
1 (0) (0) 0.

1
u uπ

π π

π δ
δ δ

π
−

′ ′= − = <
−

The first inequality follows from the concavity of u. The second equality 

uses the fact that xπ1
→ 0 as π1→π ̅1 and γ → 0. The last equality uses 

h1(0, π ̅1, 0)＝1. The last inequality is by δπ ̅1＜1.

With the limiting condition of Equation (43), a π1 can be found suf- 

ficiently close to π ̅1 such that Equation (38) holds with reversed strict 

inequality for any sufficiently small γ. As π1 increases in [0, π ̅1], the 

inequality in Equation (38) switches directions, and the intermediate value 

theorem implies the existence of π ̂1∈(0, π ̅1) such that

          
(44)

Based on Lemma 2, such a pair (π ̂1, xπ ̂1) forms a mixed-strategy full- 

support steady state.

Case 2: h1(0, π1, 0)＞1 for all π1∈[0, π1
*]. As in Case 1, view the larger 

solution to Equation (37), xπ1
, as a function of π1. If Equation (38) holds 

with reversed inequality at π1
*, then the intermediate value theorem and 

Lemma 2 imply the pair (π ̂1, xπ ̂1) forms a mixed-strategy full-support 

steady state; otherwise, Lemma 2 implies that there is a (pure-strategy) 

full-support steady state.

Lemma 1 rules out other possible full-support steady states. ■

The stability analysis on all steady states considers the following 

matrices:

1 12 (1 )
1 ,

m m
n

ζ
π ζ+ −

Φ = −
                 

 (45)

1 1

2 1 1 2 1

( ) 2 ( )
2 ,  

[ { ( )} (1 ) ( )] 2[ ( ) ]
2

w u w u w
n

w w u w u w u w w
n

ζ
π

β β β

φ
β ζ β β ζ β β β

− − + Δ⎛ ⎞
⎜ ⎟
⎜ ⎟=

− − + + − + Δ +⎜ ⎟
⎜ ⎟
⎝ ⎠  

(46)

φw
ζ＝

(47)
2 0 1 2 2

2 0 2 20 1 1

( 1 ) ( ) ( ) ( )

,  
( 1 ) (1 ) ( ) ( )( ( ) 1) (1 ( ))

n u w u w u w
n n

n u w u wu w u w
n n

π β π β β π β β π β

π β π ζ β β π β βζπ β β π β β

′ ′ ′− + + − Δ Δ⎛ ⎞
⎜ ⎟
⎜ ⎟

′ ′′ ′ − + + − − Δ+ + − Δ⎜ ⎟
⎜ ⎟
⎝ ⎠
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and

1 1

0
,

( ) ( )w w w

A
ζ
πζ

ζ ζ ζ− −

⎛ ⎞Φ
= ⎜ ⎟⎜ ⎟− Φ Φ Φ⎝ ⎠                  

 (48)

where Δw≡w2－w1 and ζ∈{0, 1}.9 The following contains the existence 

argument and the matrix computation in the Proof of Proposition 1.

Remaining Proof of Proposition 1: When β  is sufficiently close to 1, 

the pure-strategy full-support steady state exists for any sufficiently 

small γ. To verify this, let π1＝π1
*, and take the limiting process of first 

γ → 0; then, β → 1. Conditions Equations (37), (38), and Equation (39) 

approach u(xπ
1
*)＝xπ

1
*, u(2xπ

1
*)＝u(xπ

1
*)＋xπ

1
*, and δπ

1
*＝1, respectively. On the 

basis of the strict concavity of u, the limiting condition of (38) holds. 

Thus, the pure-strategy full-support steady state exists for (β , γ ), which 

is sufficiently close to (1, 0).

The proof of Lemma 3 implies that a mixed-strategy full-support steady 

state exists for any sufficiently small γ if a pure-strategy state does not 

exist; and that Jπ
1
* u’(0)＞1 is necessary for the existence of a pure- 

strategy full-support steady state. Based on Lemma 3, if u’(0)∈((n(1－

β ))/(β (1－m)), 1/Jπ
1
*),10 then a mixed-strategy full-support steady state 

exists for any sufficiently small γ, which implies a generic existence.

Next, we turn to the stability of the pure-strategy full-support steady 

state. Trading one unit in all trade meetings is a strictly preferred 

strategy at the steady state; hence, it is also optimal in its neighborhood. 

The Jacobian of this steady state at the steady state by (π *, w*) is 

Equation (48) with ζ＝1. Owing to the top-right submatrix being a zero 

matrix, one eigenvalue is given by Equation (45), which is smaller than 

1, and the other two eigenvalues are the reciprocals of the eigenvalues of 

φw
ζ. In what follows, the eigenvalues of φw

ζ are shown to be smaller than 

1 in absolute value.

Given that h1(βw1, π1
*, γ ) is concave in w1 and h1(βw1

*, π1
*, γ ), we have

 n(1－β )＋(1－ π2
*)β                        (1－π2

*)β
                   ＞ π0

*u’(βw0
*)＋ π1

*                  u’(βΔw*).  (49)
       β                              n(1－β )＋(1－π2

*)β

9 ζ is just a parameter. ζ＝1 and ζ＝0 correspond to full-support steady states 

and non-full-support steady states respectively.
10 Equation (41) implies that this set is non-empty. The condition is satisfied 

for β of intermediate value.
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The eigenvalues of a general 2 × 2 matrix         are given by

2( ) 4
, .

2
a b a b bc

η η+ −
+ ± − +

=
                 

(50)

Both eigenvalues are real because

2 ** *
2 * *20 1

1
1( ) 4 ( ) 4 ( ) 0. a b bc u w u w

n n n
ππ πβ β β β β

⎡ ⎤ −′ ′− + = + Δ >⎢ ⎥
⎣ ⎦

They are smaller than 1 in absolute value if and only if a＋d＜2 and 

(1－a)(1－d)－bc＞0. An algebra computation produces

* *
*2 0
1

11 1 2 1 ( )na d u w
n n

π πβ β β
⎛ ⎞− + ′− + − = − − >⎜ ⎟
⎝ ⎠

  n(1－β )＋(1－π2
*)β     π0

* 
2                   －    βu’(βw1

*)
          n            n

   π1
*      (1－π2

*)β                   n(1－β )＋(1－π2
*)β    

－                       βu’(βΔw*)＞                  ; 
   n   n(1－β )＋(1－π2

*)β                      n

and

* * *
* *2 0 1
1

1(1 )(1 ) 1 ( ) ( )na d bc u w u w
n n n

π π πβ β β β β
⎛ ⎞− + ′ ′− − − = − − + Δ⎜ ⎟
⎝ ⎠

                  

* *
*2 111 ( )n u w

n n
π πβ β β

⎛ ⎞− + ′− − Δ −⎜ ⎟
⎝ ⎠

** * *
* * *21 0 1

1
1( ) ( ) ( )u w u w u w

n n n n
ππ π πβ β β β β β β

⎡ ⎤−′ ′ ′Δ + − Δ =⎢ ⎥
⎣ ⎦

* * *
* * * *2 2 2
0 1 12 *

2

(1 ) (1 ) (1 ) (1 ) (1  )( ) ( ) 0,
(1 ) (1 )

n n u w u w
n n

β π β β π β π ββ π β π β
β β π β

⎛ ⎞− + − − + − −′ ′− − Δ >⎜ ⎟− + −⎝ ⎠

where the last inequalities of the above two conditions follow from 

Equation (49). In summary, the Jacobian only has one eigenvalue smaller 

than 1 in absolute value. The pure-strategy full-support steady state 

a b
c d
⎛ ⎞
⎜ ⎟
⎝ ⎠
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has a 1D stable manifold. With the convergent path restricted by one 

initial condition, this full-support steady state is locally stable and 

determinate. ■

Matrix Computation in Proposition 2: The Jacobian (48) with ζ＝0 

reduces to

1 0 0
/ 1/ 0 ,
/ 0 1/

A r a a
s d d

γ
⎛ ⎞
⎜ ⎟′ ′= −⎜ ⎟
⎜ ⎟′ ′−⎝ ⎠                 

 (51)

where 

   1             1                        (n－1＋m)β    1－m     
r≡  u(βw2), s≡   [u(βw2)－βw2]＞0, a’≡            ＋     βu’(0), 
   n            2n                             n         n

and 

    (n－1＋m)β   1－m            
d’≡           ＋     βu’(βw2). 
         n         n

Note that because w2 is the larger positive solution to Equation (11), 

a’＞1 and d’∈(0, 1) hold. The eigenvalues of Equation (51) are its 

diagonal elements. 

The law of motion has a unit root convergence. The associated 

eigenvector, which constitutes a base for the eigenspace, has the form 

        . ■
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